Нікозніма Матн. J. 27 (1997), 177–188

Higher Specht polynomials

Susumu ARIKI, Tomohide TERASOMA AND Hiro-Fumi YAMADA (Received September 14, 1995)

(Revised February 23, 1996)

ABSTRACT. A basis of the quotient ring S/J_+ is given, where S is the ring of polynomials and J_+ is the ideal generated by symmetric polynomials of positive degree. They are called higher Specht polynomials.

0. Introduction

The purpose of this paper is to give a detailed proof of the result announced in [4], and to give its generalization.

Let $S = \mathbb{C}[x_0, ..., x_{n-1}]$ be the algebra of polynomials of *n* variables $x_0, ..., x_{n-1}$ with complex coefficients, on which the symmetric group \mathfrak{S}_n acts by the permutation of the variables:

$$(\sigma f)(x_0,\ldots,x_{n-1})=f(x_{\sigma(0)},\ldots,x_{\sigma(n-1)})(\sigma\in\mathfrak{S}_n)$$

Let $e_j(x_0, \ldots, x_{n-1}) = \sum_{0 \le i_1 < \cdots < i_j \le n-1} x_{i_1} \ldots x_{i_j}$ be the elementary symmetric polynomial of degree *j* and set $J_+ = (e_1, \ldots, e_n)$, the ideal generated by e_1, \ldots, e_n . The quotient ring $R = S/J_+$ has a structure of an \mathfrak{S}_n -module. Let n_0, \ldots, n_{r-1} be natural numbers such that $n = \sum_{i=0}^{r-1} n_i$. Then the product of symmetric groups $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ is naturally embedded in \mathfrak{S}_n . By restricting to this subgroup, *R* is an $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ -module. We give a combinatorial procedure to obtain a basis of each irreducible component of *R*. In view of this construction, these polynomials such obtained might be called higher Specht polynomials. The case $n_0 = n$ is treated in [4]. When $n_0 = \cdots = n_{n-1} = 1$, this basis becomes the descent basis for *R* (see [3]).

As an application, we also give a similar basis for a complex reflection group $G_{r,n} = (\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$. Let S be the symmetric algebra of the natural $G_{r,n}$ representation over C. The ring of invariants $S^{G_{r,n}}$ is known to be isomorphic to a polynomial ring $\mathbb{C}[e_1^{(r)}, \ldots, e_n^{(r)}]$ generated by the elementary symmetric polynomials $e_1^{(r)}, \ldots, e_n^{(r)}$ in x_i^{r} 's. We put $\mathbb{R}^{(r)} = S/J_+$, where $J_+ = (e_1^{(r)}, \ldots, e_n^{(r)})$. As a $G_{r,n}$ -module, it is equivalent to the regular representation. It is also known that the irreducible representations of $G_{r,n}$ are indexed

¹⁹⁹¹ Mathematics Subject Classification. 05E10, 20C30.

Key words and phrases. Reflection groups, Specht polynomials.