On the union of 1-convex open sets

Makoto Abe

(Received January 28, 1997)

ABSTRACT. A complex space X is 1-convex if it satisfies the conditions that there exists a locally finite 1-convex open covering of X of order ≤ 2 , that the dimension of $H^1(X, \mathcal{O}_X)$ is at most countably infinite and that X is K-separable outside a compact set.

0. Introduction

It is well-known that the union of two Stein open sets in a complex space is not necessarily Stein. For example the union of two Stein open sets $\{(z_1,z_2)\in\mathbb{C}^2||z_1|<1,0<|z_2|<1\}$ and $\{(z_1,z_2)\in\mathbb{C}^2||0<|z_1|<1,|z_2|<1\}$ in \mathbb{C}^2 is not Stein. Tovar [22] proved that if X is a union of two relatively compact Stein open sets D_1 and D_2 in a reduced Stein space S such that $\dim H^1(X,\mathcal{O}_X)<+\infty$, then X is also a Stein open set in S (Theorem 3 of Tovar [22] or Theorem 1.1 of Cho-Shon [4]).

We prove the following theorem which is a generalization of Theorem 3 of Tovar [22]. It also gives a generalization of Proposition 3.4 of Cho-Shon [4] on the finite simple chain Stein open covering. In the proof we use the theorem of Nguyen-Nguyen [20].

Let X be a second countable (not necessarily reduced) complex space. Then X is 1-convex if it satisfies the following three conditions.

- i) There exists a locally finite 1-convex open covering of X of order ≤ 2 .
- ii) The dimension of $H^1(X, \mathcal{O}_X)$ is at most countably infinite.
- iii) X is K-separable outside a compact set.

We also give a 1-convex version of the theorem of Markoe [16] and Silva [21] on the union of the monotone increasing sequence of Stein open sets. The results in this paper were announced in the author's articles [1, 2].

1. Preliminaries

Throughout this paper all complex spaces are supposed to be second countable. Let X be a (not necessarily reduced) complex space. We always

¹⁹⁹¹ Mathematics Subject Classification. 32F10, 32E10, 32E05.

Key words and phrases. 1-convex space, Stein space, K-separability, Remmert reduction.