Based modules and good filtrations in algebraic groups

Masaharu KANEDA

(Received May 12, 1997)

ABSTRACT. Let \mathfrak{G}_t be a simply connected semisimple algebraic group over an algebraically closed field \mathfrak{k} of positive characteristic with simple system of roots \prod . After the initial efforts by Wang J.-P. and S. Donkin, O. Mathieu proved, using the Frobenius splitting of the flag variety, Donkin's conjectures that (i) if \prod' is a subset of \prod and if \mathfrak{G}'_t is the semisimple subgroup of \mathfrak{G}_t generated by the root subgroups associated to \prod' , then any Weyl module of \mathfrak{G}_t admits a filtration by \mathfrak{G}'_t -modules all of whose subquotients are Weyl modules for \mathfrak{G}'_t ; (ii) the tensor product of any two Weyl modules of \mathfrak{G}_t admits a filtration by \mathfrak{G}_t -modules are Weyl modules of \mathfrak{G}_t . In this note we explain that the conjectures can also be obtained as immediate consequences of Lusztig's results on based modules.

Introduction

Let $\mathfrak{G}_{\mathfrak{f}}$ be a simply connected semisimple algebraic group over an algebraically closed field f of positive characteristic with simple system of roots Π . After the initial efforts by Wang J.-P. and S. Donkin, using the Frobenius splitting of the flag variety O. Mathieu [M] proved Donkin's conjectures that (i) if Π' is a subset of Π and if $\mathfrak{G}'_{\mathfrak{f}}$ is the semisimple subgroup of $\mathfrak{G}_{\mathfrak{f}}$ generated by the root subgroups associated to Π' , then any Weyl module of $\mathfrak{G}_{\mathfrak{f}}$ admits a filtration by $\mathfrak{G}'_{\mathfrak{f}}$ -modules all of whose subquotients are Weyl modules for $\mathfrak{G}'_{\mathfrak{f}}$; (ii) the tensor product of any two Weyl modules of $\mathfrak{G}_{\mathfrak{f}}$ admits a filtration by $\mathfrak{G}_{\mathfrak{f}}$ -modules all of whose subquotients are Weyl modules of $\mathfrak{G}_{\mathfrak{f}}$. Since then J. Paradowski [P] has given another proof using Lusztig's canonical basis. There is yet a third proof using Kashiwara's crystal base; Donkin's conjectures are immediate consequences of Lusztig's results on based modules [L], which may be worth pointing out after the appearence of a friendly account [J] of crystal The third proof works naturally over Z, hence over any commutative bases. ring, and is free of Donkin's cohomological criterion for the existence of good filtrations [JG, II.4.16].

In $\S1$ of the present note we will restate Lusztig's results in the framework of [J], and show Donkin's conjectures. We see that the proof is logically

¹⁹⁹¹ Mathematics Subject Classification 20G

Key words and phrases, Based modules, Crystal Bases, Good filtrations