Bipotential elliptic differential operators

Victor Anandam

(Received March 31, 1997)

ABSTRACT. The classification of the second order elliptic differential operators with locally Lipschitz coefficients in a domain in \mathbb{R}^n is considered. Using potential-theoretic techniques, it is modelled after the biharmonic classification of Riemannian manifolds.

1. Introduction

Let Ω be a domain in \mathbb{R}^n , $n \ge 2$, and $\mathscr{L}(\Omega)$ the family of all second order elliptic differential operators with locally Lipschitz coefficients in Ω . In this article, we put the elements in $\mathscr{L}(\Omega)$ into different classes depending on the existence of certain special solutions of the operators.

The classification is modelled after (and more general than) that of the Riemannian manifolds \mathcal{R} based on the existence of Green functions, biharmonic functions, biharmonic Green functions etc.

The similarity between these two classifications of $\mathscr{L}(\Omega)$ and \mathscr{R} arises from the fact that the C^2 -solutions of Lu = 0 for any $L \in \mathscr{L}(\Omega)$ and the harmonic functions defined by $\Delta u = 0$ in $R \in \mathscr{R}$ (where Δ is the Laplace-Beltrami operator on R) both satisfy locally the basic assumptions in the axiomatic potential theory of M. Brelot [4].

2. Preliminaries

Let $\mathscr{L}(\Omega)$ denote the family of all second order elliptic differential operators with locally Lipschitz coefficients defined on a domain Ω in $\mathbb{R}^n, n \ge 2$. Assume that the last coefficient is 0 in each $L \in \mathscr{L}(\Omega)$. Precisely, $Lu(x) = \sum_{i,j} a_{ij}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_j} + \sum_i b_i(x) \frac{\partial u(x)}{\partial x_i}$, where the a_{ij} 's are in $C^{2,\lambda}$ and the b_i 's are in $C^{1,\lambda}$; $a_{ij} = a_{ji}$; and the quadratic form $\sum_{i,j} a_{ij} \xi_i \xi_j$ is positive definite for every $x \in \Omega$.

Then the C^2 -functions u in an open set $w \subset \Omega$ for which Lu = 0 are called the *L*-harmonic functions in w. Such solutions satisfy the basic assumptions of

AMS Subject Classification: 31D05, 31B35.

Key words and phrases: Bipotential operators; Admissible superharmonic functions.