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ABSTRACT. Transversely flat conformal foliations with good transverse invariant
measures are Riemannian in the usual sense, namely, in the C® sense.

Introduction

In the previous paper [1] we have shown that transversely flat conformal
foliations with good measures are transversely Riemannian in the C1*UP sense,
that is, we can find a holonomy invariant transverse Riemannian metric of class
C+Lip Recently, we found that this is still true even if we replace C!*LiP with
C®. Namely, we have the following.

THEOREM A. Let (M, %) be a transversely flat conformal foliation of a
closed manifold M. Assume that there is a good measure on M. Then there is
a transverse invariant Riemannian metric of (M,%) which is of class C®,
namely, (M,%) is Riemannian in the usual sense.

Thus the theory for Riemannian foliations, which can be found in Molino
[3] for instance, applies for such foliations. The proof of Theorem A can be
done if we simply replace the metric in the previous paper [1] with one
constructed in Ferrand [2]. The paper [2] is informed by H. Izeki, and the
author would like to express his gratitude to him.

1. Proof of Theorem A

We recall the definitions, notations and some facts appeared in [1]. First
of all, we recall the notion of good measures.

DEerFINITION 1.1. A transverse invariant measure u of (M, %) is said to be
good if u has the following properties:
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