Minimax estimation of common variance in normal distributions when the mean vector is known to lie in an ellipsoid

Teruo Fuioka
(Received December 26, 1997)
(Revised January 20, 1998)

Abstract

This paper is concerned with minimax estimation of variance when n samples y_{1}, \ldots, y_{n} are independently normally distributed with common variance. Here it is assumed that $\left(E\left(y_{1}\right), \ldots, E\left(y_{n}\right)\right)$ is known to lie in an ellipsoid. A new class of estimators which are quadratic in y_{1}, \ldots, y_{n} are introduced and the minimax estimators are explicitly given. The case of i.i.d. sample with $N\left(0, \sigma^{2}\right)$ is discussed as a special case where the ellipsoid degenerates to the origin. In this case our minimax estimator provides the minimum mean squared error estimator of σ^{2}.

1. Introduction

This paper is concerned with minimax estimation of variance in a model which is closely related to a nonparametric regression. We consider a simplified model. Let $y_{i}(i=1, \ldots, n)$ be independently distributed as $N\left(\mu_{i}, \sigma^{2}\right)$, where both the mean vector $\left(\mu_{1}, \ldots, \mu_{n}\right)$ and the variance σ^{2} are unknown. The mean vector is assumed to lie in an ellipsoid

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} \mu_{i}^{2} \leq r \sigma^{2} \tag{1}
\end{equation*}
$$

with fixed constants $0<\lambda_{1}<\cdots<\lambda_{n}$ and a fixed value $r>0$. Speckman [21] introduced such a model by considering a simplified formulation of spline smoothing in nonparametric regression. Let the observation y_{i} be taken at a design point $t_{i} \in[a, b]$. Suppose that $y_{i}=f\left(t_{i}\right)+\varepsilon_{i}$, where f is a smooth function, and ε_{i} is distributed with mean 0 and unknown variance σ^{2}. It is assumed that f has a bounded square integrable q th derivative, and a squared norm for f is defined by $\left\|f^{(q)}\right\|^{2}=\int_{a}^{b}\left|f^{(q)}(t)\right|^{2} d t$. Let \mathscr{S}_{n}^{q} be the space of natural polynomial splines of degree $2 q-1$ with knots $\left\{t_{1}, \ldots, t_{n}\right\}$, and $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ be the basis introduced by Demmler-Reinsch [6]. If $f=\sum \beta_{k} \varphi_{k} \in$

[^0]
[^0]: 1991 Mathematics Subject Classification: Primary 62C20; Secondary 62G07.
 Key words and phrases: nonparametric regression, quadratic loss function, spline smoothing.

