Some homotopy groups of the rotation group R_n

Dedicated to Professor Teiich Kobayashi on his 60th birthday

Hideyuki KACHI and Juno MUKAI (Received June 6, 1996) (Revised September 22, 1998)

ABSTRACT. We determine the group strucures of the 2-primary components of the homotopy groups of the rotation group $\pi_k(R_n)$ for k = 17 and 18 by use of the fibration $R_{n+1}/R_n = S^n$.

Introduction

We denote by R_n the *n*-th rotation group. We know the homotopy groups $\pi_k(R_n)$ for $k \le 15$ by [7]. According to [9] and [8], the group structures of $\pi_k(R_n)$ for $k \le 22$ and $n \le 9$ are known. For k = 15 and 16, we know the 2-primary components of $\pi_k(R_n)$ ([5]). We denote by $\pi_k(X:2)$ a suitablly chosen subgroup of the homotopy group $\pi_k(X)$ which consists of the 2-primary component and a free part such that the index $[\pi_k(X):\pi_k(X:2)]$ is odd. The purpose of the present note is to determine $\pi_k(R_n:2)$ for k = 17 and 18.

Our method is the composition methods developed by Toda [17]. We freely use generators and relations in the homotopy groups of spheres $\pi_{n+k}(S^n)$ for $k \leq 18$. In determining $\pi_{18}(R_n : 2)$, the precise informations of the generators of $\pi_{n+18}(S^n)$ for $10 \leq n \leq 12$ ([14]) are essentially used. Our main tool is to use the following exact sequence induced from the fibration $R_{n+1}/R_n = S^n$:

$$(k)_n \qquad \pi_{k+1}(S^n) \xrightarrow{\Delta} \pi_k(R_n) \xrightarrow{i_*} \pi_k(R_{n+1}) \xrightarrow{p_*} \pi_k(S^n) \xrightarrow{\Delta} \pi_{k-1}(R_n),$$

where $i: R_n \hookrightarrow R_{n+1}$ is the inclusion, $p: R_{n+1} \to S^n$ is the projection and Δ is the connecting map.

The metastable range is obtained from the splitting ([2]):

$$\pi_k(R_n) \cong \pi_k(R_\infty) \oplus \pi_{k+1}(V_{2n,n}) \quad \text{for } k \le 2n-1 \quad \text{and} \quad n \ge 13,$$

where $V_{m,r} = R_m/R_{m-r}$ for $m \ge r$ is the Stiefel manifold.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55Q52; Secondary 55Q40, 55Q50, 55R10 Key words and phrases. Rotation groups, Homotopy groups.