On the existence of solutions of nonlinear boundary value problems at resonance in Sobolev spaces of fractional order

Thomas RUNST*

(Received April 10, 1998) (Revised June 18, 1998)

ABSTRACT. The purpose of this paper is to prove existence results for a class of degenerate boundary value problems for second-order elliptic operators in the framework of Sobolev spaces of fractional order. The proofs apply generalized solvability conditions of Landesman-Lazer type, Leray-Schauder degree arguments and maximum principles.

1. Introduction and main result

Let $\Omega \subset \mathbf{R}^n$ be a bounded domain with C^{∞} boundary $\partial \Omega$. Let

$$Au(x) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_j}(x) \right) + c(x)u(x)$$

be a second order elliptic differential operator with real C^{∞} functions a_{ij}, c on $\overline{\Omega}$ satisfying the following properties:

(p1) $a_{ij}(x) = a_{ji}(x), i, j = 1, \ldots, n, x \in \overline{\Omega}.$

(p2) There exists a positive constant C_0 such that for all $x \in \overline{\Omega}$ and all $\xi \in \mathbf{R}^n$

$$\sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \ge C_0|\xi|^2.$$

(p3) $c(x) \ge 0$ on $\overline{\Omega}$.

We consider the following class of degenerate boundary value problems for semilinear second-order elliptic differential operators

$$Au - \lambda_1 u = g(u) + f$$
 in Ω , $Bu = a \frac{\partial u}{\partial v} + bu = 0$ on $\partial \Omega$ (P)

^{*}partly supported by Deutsche Forschungsgemeinschaft, grant Tr 374/1-2

¹⁹⁹¹ Mathematics Subject Classification. 35J65, 47H11, 47H15.

Key words and phrases. Degenerate boundary value problems, Landesman-Lazer conditions, Leray-Schauder degree.