A note on the localization of *J*-groups

Mohammad OBIEDAT

(Received June 4, 1998) (Revised September 15, 1998)

ABSTRACT. Let $\widetilde{JO}(X) = \widetilde{KO}(X)/TO(X)$ be the *J*-group of a connected finite *CW* complex *X*. Using Atiyah-Tall [5], we obtain two computable formulae of $TO(X)_{(p)}$, the localization of TO(X) at a prime *p*. Then we show how to use those two formulae of $TO(X)_{(p)}$ to find the *J*-orders of elements of $\widetilde{KO}(X)$, at least the 2 and 3 primary factors of the canonical generators of $\widetilde{JO}(\mathbb{C}P^m)$. Here $\mathbb{C}P^m$ is the complex projective space.

1. Introduction

Let $\widehat{JO}(X) = \widehat{KO}(X)/TO(X)$ be the J-group of a connected finite CW complex X, where $\widehat{KO}(X)$ is the additive subgroup of the KO-ring KO(X) of elements of virtual dimension zero and $TO(X) = \{E - F \in \widehat{KO}(X) : S(E \oplus n)$ is fibre homotopy equivalent to $S(F \oplus n)$ for some $n \in \mathbb{N}\}$. Let ψ^k be the Adams operations. Then Adams [1] and Quillen [13] showed that TO(X) =WO(X) = VO(X). Here

$$WO(X) = \bigcap_{f} \widetilde{KSO}(X)_{f} \tag{1}$$

where the intersection runs over all functions $f: \mathbb{N} \to \mathbb{N}$ and $\widetilde{KSO}(X)_f = \langle k^{f(k)}(\psi^k - 1)(u) : u \in \widetilde{KSO}(X) \text{ and } k \in \mathbb{N} \rangle$, and

$$VO(X) = \left\{ x \in \widetilde{KSO}(X) : \text{there exists } u \in \widetilde{KSO}(X) \text{ such that} \\ \theta_k(x) = \frac{\psi^k (1+u)}{1+u} \in 1 + \widetilde{KSO}(X) \otimes \mathbf{Q}_k \text{ for all } k \in \mathbf{N} \right\}$$
(2)

where θ_k are the Bott exponential classes, and $\mathbf{Q}_k = \{n/k^m : n, m \in \mathbf{Z}\}.$

For a prime p, let $\widetilde{JO}(X)_{(p)}$ denote the localization of $\widetilde{JO}(X)$ at p. Since $\widetilde{JO}(X)$ is a finite abelian group, $\widetilde{JO}(X)_{(p)}$ is isomorphic to the p-summand of

¹⁹⁹¹ Mathematics Subject Classification. Primary 55Q50, 55R50.

Key words and phrases. Fibre homotopy equivalence, Hopf line bundle, orientable real vector bundle, Adams operations, Bott classes.