Stably extendible vector bundles over the real projective spaces and the lens spaces

Teiichi KOBAYASHI, Haruo MAKI and Toshio YOSHIDA (Received January 18, 1999)

ABSTRACT. Let RP^n be the *n*-dimensional real projective space and let $L^n(q)$ be the (2n + 1)-dimensional standard lens space mod q. The purpose of this paper is to prove that a complex k-dimensional vector bundle ζ over RP^n is stably equivalent to a sum of k complex line bundles if ζ is stably extendible to RP^m for every m > n, to prove that a real k-dimensional vector bundle ζ over $L^n(3)$ is stably equivalent to a sum of [k/2] real 2-plane bundles if ζ is stably extendible to $L^m(3)$ for every m > n and to study non stable extendibility of complex vector bundles over $L^n(4)$.

1. Introduction

Let *F* denote the real field *R*, the complex field *C* or the quaternion field *H*. Let *X* be a *CW*-complex and *A* be a subcomplex. A *k*-dimensional *F*-vector bundle ζ over *A* is called extendible (respectively stably extendible) to *X*, if there exists a *k*-dimensional *F*-vector bundle α over *X* whose restriction to *A* is equivalent (respectively stably equivalent) to ζ as *F*-vector bundles, that is, if the restriction $\alpha | A$ of α to *A* is isomorphic to ζ (respectively $(\alpha | A) \oplus \varepsilon^n$ is isomorphic to $\zeta \oplus \varepsilon^n$ for some trivial *F*-vector bundle ε^n over *A*), where \oplus denotes the Whitney sum (cf. Schwarzenberger [14] and Imaoka-Kuwana [4]).

In the following we say simply a vector bundle instead of an *R*-vector bundle.

Concerning stably extendible F-vector bundles for F = C and R, the following results are known.

THEOREM (Schwarzenberger (cf. [3], [14], [2], [13])). Let F = C or R. If a k-dimensional F-vector bundle ζ over FP^n is stably extendible to FP^m for each m > n, then ζ is stably equivalent to a sum of k F-line bundles.

In the original results of Schwarzenberger, the F-vector bundles are assumed to be extendible, but the results are also valid for the stably extendible F-vector bundles.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55R50, secondary 55N15.

Key words and phrases. stably extendible, vector bundle, K-theory, real projective space, lens