Modification of AIC-type criterion in multivariate normal linear regression with a future experiment

Kenichi Satoh
(Received December 9, 1998)
(Revised March 2, 1999)

Abstract

In this paper we propose a modification of Predictive AIC which is an extension of $A I C$ to an extrapolation case. This modification reduces bias for both the cases when a candidate model contains the true model and even when it does not contain the true model. Simmulation study shows that our criterion has also a good property in the mean square error.

1. Introduction

We consider multivariate linear regression of response variables y_{1}, \ldots, y_{p} on a subset of k_{F} explanatory variables $x_{1}, \ldots, x_{k_{F}}$. Suppose that there are n observations of $y^{\prime}=\left(y_{1}, \ldots, y_{p}\right)$ for each fixed explanatory variables $x_{F}^{\prime}=$ $\left(x_{1}, \ldots, x_{k_{F}}\right)$. Let Y be an $n \times p$ current observation matrix and X_{F} an $n \times k_{F}$ current regression matrix. The multivariate linear regression model including all explanatory variables is written as

$$
Y=X_{F} \Theta_{F}+\mathscr{E}, \quad \mathscr{E} \sim N_{n \times p}\left(\mathrm{O}_{n \times p}, \Sigma_{F} \otimes I_{n}\right),
$$

where Θ_{F} is a $k_{F} \times p$ matrix of unknown parameters, \mathscr{E} is an $n \times p$ error matrix and the rows of \mathscr{E} are assumed to be independently distributed as a p variate normal distribution with mean zero and covariance matrix Σ_{F}. We call the model current full model or full model. The multivariate linear regression has been disscussed in both theoritical and applied statistics, e.g., in a theoritical statistics (Anderson (1958), Rao (1973), Silvey (1970)) and in an applied statistics (Chatterjee and Price (1977), Draper and Smith (1966), Seber (1977)). Mainly our disscussions are based on a multivariate normal distibution. Since our regression model has an normal distributed error matrix, the probability density function of the observation matrix under the full model is given by

$$
f_{F}^{Y}\left(Y \mid \Theta_{F}, \Sigma_{F}\right)=(2 \pi)^{-n p / 2}\left|\Sigma_{F}\right|^{-n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(Y-X_{F} \Theta_{F}\right)^{\prime}\left(Y-X_{F} \Theta_{F}\right) \Sigma_{F}^{-1}\right\}
$$

[^0]
[^0]: 2000 Mathematics Subject Classification. 62H12, 62F7.
 Key words and phrases. AIC, bias reduction, extrapolation, model selection, normal linear regression, small sample.

