On the action of β_1 in the stable homotopy of spheres at the prime 3

Katsumi SHIMOMURA (Received May 12, 1999) (Revised September 20, 1999)

ABSTRACT. Let S^0 denote the sphere spectrum localized away from 3. The element β_1 is the generator of the homotopy group $\pi_{10}(S^0)$. Toda showed that $\beta_1^5 \neq 0$ and $\beta_1^6 = 0$. In this paper, we generalize his result and show that $\beta_1^4\beta_{9_{l+1}} \neq 0$ and $\beta_1^5\beta_{9_{l+1}} = 0$ for $\beta_{9_{l+1}} \in \pi_{144_{l+10}}(S^0)$ with $t \ge 0$. In particular, $\beta_1^4\beta_{10} \neq 0$ and $\beta_1^5\beta_{10} = 0$, where the existence of β_{10} was shown by Oka. This is proved by determining subgroups of $\pi_*(L_2S^0)$. Here L_2 denotes the Bousfield localization functor with respect to $v_2^{-1}BP$.

1. Introduction

Let p be a prime number and S^0 the sphere spectrum localized away from p. p. Let $E_r^*(X)$ denote the E_r -term of the Adams-Novikov spectral sequence converging to $\pi_*(X)$ for a spectrum X localized away from p. Miller, Ravenel and Wilson [1] introduced β -elements $\beta_{s/j,i+1}$ in $E_2^2(S^0)$ for $(s, j, i+1) \in \mathbf{B}^+$, where

$$B^{+} = \{(s, j, i+1) \in \mathbb{Z}^{3} | s = mp^{n}, n \ge 0, p \not \mid m \ge 1, j \ge 1, i \ge 0, \text{ subject to}$$

i) $j \le p^{n}$ if $m = 1$, ii) $p^{i} | j \le a_{n-i}$, and iii) $a_{n-i-1} < j$ if $p^{i+1} | j \}$

for integers a_k defined by $a_0 = 1$ and $a_k = p^k + p^{k-1} - 1$. Here we use the abbreviation $\beta_{s/j,1} = \beta_{s/j}$ and $\beta_{s/1,1} = \beta_s$.

Let V(1) denote the Toda-Smith spectrum, which is a cofiber of the Adams map $\alpha: \Sigma^{2p-2}V(0) \to V(0)$, where V(0) is the mod p Moore spectrum. Since there exists a map $\beta: \Sigma^{2p^2-2}V(1) \to V(1)$ which induces v_2 on *BP*-homology at a prime p > 3 by [9], we have homotopy elements $\beta_i \in \pi_{2t(p^2-1)-2p}(S^0)$ with t > 0. On the other hand, there is no such self map at the prime 3. However there are homotopy elements β_i for i = 1, 2, 3, 5, 6, 10 in this case due to Toda and Oka (*cf.* [2]). Besides, assuming the existence of the self map $B: \Sigma^{144}V(1) \to V(1)$ that induces v_2^9 on *BP*-homology, we see

²⁰⁰⁰ Mathematics Subject Classification. 55Q45, 55Q51.

Key words and phrases. Homotopy groups of spheres, L_2 -localization, β -elements, Adams-Novikov spectral sequence.