Dihedral f-tilings of the sphere by triangles and well centered quadrangles

Ana M. d’Azevedo Breda* and Altino F. Santos*
(Received April 22, 2004)
(Revised November 2, 2005)

Abstract

In [1] the notion of well centered spherical quadrangle (WCSQ) and their properties were described. The study of dihedral f-tilings of the Riemannian sphere S^{2} by spherical triangles and WCSQ was initiated in [2], where the classification by spherical triangles and equiangular spherical quadrangles was given. In [3] the classification of dihedral f-tilings by spherical triangles and spherical quadrangles of lozenge type was done. Here we complete the classification of all dihedral f-tilings of S^{2} by triangles and well centered quadrangles, presenting the study of dihedral f-tilings by triangles and WCSQ with distinct pairs of congruent opposite angles and with distinct pairs of congruent opposite sides, Figure 80.

1. Introduction

Let us consider the Riemannian sphere S^{2}. A spherical moon L is said well centered if its vertices belong to the great circle $S^{2} \cap\left\{(x, y, z) \in \mathbf{R}^{3} \mid x=0\right\}$ and the semi-great circle bisecting L contains the point $(1,0,0)$. By a well centered spherical quadrangle (WCSQ) we mean a spherical quadrangle which is the intersection of two well centered spherical moons with distinct vertices. In [1] it was established that any spherical quadrangle with congruent opposite internal angles is congruent to a WCSQ.

By a dihedral f-tiling of the sphere S^{2} whose prototiles are a WCSQ Q and a spherical triangle T we mean a polygonal subdivision τ of S^{2} such that each cell of τ is isometric either to Q or T and all vertices of τ satisfy the anglefolding relation.

F-tilings are intrinsically related to the theory of isometric foldings of Riemannian manifolds. See [8] for the foundations of this subject.

Isometric foldings are locally isometries which send piecewise geodesic segments into piecewise geodesic segments of the same length. These maps are

[^0]
[^0]: * Supported in part by UI\&D Matemática e Aplicações of University of Aveiro, through Program POCTI of FCT cofinanced by the European Community fund FEDER.

 2000 Mathematics Subject Classification. 52C20, 05B45.
 Key words and phrases. dihedral tilings, isometric foldings, spherical trigonometry, WCSQ.

