Нікозніма Матн. J. **31** (2001), 391–408

The homotopy groups $\pi_*(L_2V(0) \wedge T(k))$

Yousuke KAMIYA and Katsumi SHIMOMURA (Received May 17, 2000) (Revised February 14, 2001)

ABSTRACT. Let V(0) and T(k) denote the mod p Moore spectrum and the Ravenel spectrum at a prime p, respectively. We determine the homotopy groups $\pi_*(L_2V(0) \land T(k))$ for $k \ge 2$ and p > 2. This is done by determining the chromatic E_1 -term $H(k)^*M_1^1$, which is obtained by using only two key lemmas: one is to define the Miller-Ravenel-Wilson elements and the other is to give a one dimensional element ζ .

1. Introduction and the statement of results

Let T(k) denote the Ravenel ring spectrum at a prime p, which is characterized by the Brown-Peterson homology $BP_*(T(k)) = BP_*[t_1, t_2, \dots, t_k] \subset$ $BP_*(BP) = BP_*[t_1, t_2, \ldots],$ where $BP_* = Z_{(p)}[v_1, v_2, \ldots].$ Note that $T(0) = S^0$. Then the homotopy groups $\pi_*(T(k))$ are, in a sense, an approximation of the homotopy groups $\pi_*(S^0)$ of spheres. For the Bousfield localization functor L_n on the stable homotopy category with respect to $v_n^{-1}BP$, the homotopy groups $\pi_*(L_nS^0)$ are also an approximation of $\pi_*(S^0)$. Both of the homotopy groups are considerably easier to compute than the homotopy groups of spheres. In this paper we determine the homotopy groups of $L_2V(0) \wedge T(k)$ for each $k \ge 2$ at an odd prime p, where V(0) denotes the mod p Moore spectrum. These groups are computed by the Adams-Novikov spectral sequence and the chromatic spectral sequence. The E_1 -terms of the chromatic spectral sequence are $H(k)^* M_1^0$ and $H(k)^* M_1^1$, where $H(k)^* M =$ $\operatorname{Ext}_{BP_*(BP)}^*(BP_*, M \otimes_{BP_*} BP_*(T(k)))$. If the prime p is odd, then the Adams-Novikov spectral sequence collapses from the E_2 -term, and so it suffices to determine the chromatic E_1 -terms to obtain the module structure of $\pi_*(L_2V(0) \wedge T(k))$. Ravenel determined $H(k)^*M_1^0$ (cf. [4]) and we determine $H(k)^*M_1^1$ here not only for an odd prime p but also for the prime 2. We note that our computation for $H(k)^0 M_1^1$ also works in the case where k = 1and p > 2. For the case k = 0, it is determined in [10] and [6] if p > 3, in [9] if p = 3 and in [8] if p = 2, which show that the computation is very

²⁰⁰⁰ Mathematics Subject Classification. 55Q51, 55Q10.

Key words and phrases. Homotopy groups, L_2 -localization, Adams-Novikov spectral sequence, chromatic spectral sequence, Ravenel spectrum