Нікозніма Матн. J. **31** (2001), 299–330

General characterization theorems and intrinsic topologies in white noise analysis

Nobuhiro AsaI*, Izumi KUBO and Hui-Hsiung KUO (Received July 25, 2000) (Revised October 23, 2000)

ABSTRACT. Let *u* be a positive continuous function on $[0, \infty)$ satisfying the conditions: (i) $\lim_{r\to\infty} r^{-1/2} \log u(r) = \infty$, (ii) $\inf_{r\geq 0} u(r) = 1$, (iii) $\lim_{r\to\infty} r^{-1} \log u(r) < \infty$, (iv) the function $\log u(x^2)$, $x \ge 0$, is convex. A Gel'fand triple $[\mathscr{C}]_u \subset (L^2) \subset [\mathscr{C}]_u^*$ is constructed by making use of the Legendre transform of *u* discussed in [4]. We prove characterization theorems for generalized functions in $[\mathscr{C}]_u^*$ and for test functions in $[\mathscr{C}]_u$ in terms of their *S*-transforms under the same assumptions on *u*. Moreover, we give an intrinsic topology for the space $[\mathscr{C}]_u$ of test functions and prove a characterization theorem for measures. We briefly mention the relationship between our method and a recent work by Gannoun et al. [10]. Finally, conditions for carrying out white noise operator theory and Wick products are given.

1. Introduction

Let \mathscr{E} be a real topological vector space with topology generated by a sequence of inner product norms $\{|\cdot|_p\}_{p=0}^{\infty}$. We assume that \mathscr{E} is a complete metric space with respect to the metric

$$d(\xi,\eta) = \sum_{p=0}^{\infty} \frac{1}{2^p} \frac{|\xi-\eta|_p}{1+|\xi-\eta|_p}, \qquad \xi,\eta\in \mathscr{E}.$$

In addition we assume the following conditions:

- (a) There exists a constant $0 < \rho < 1$ such that $|\cdot|_0 \le \rho |\cdot|_1 \le \cdots \le \rho^p |\cdot|_p \le \cdots$.
- (b) For any $p \ge 0$, there exists $q \ge p$ such that the inclusion $i_{q,p}$: $\mathscr{E}_q \hookrightarrow \mathscr{E}_p$ is a Hilbert-Schmidt operator. (Here \mathscr{E}_p is the completion of \mathscr{E} with respect to the norm $|\cdot|_p$.)

Let \mathscr{E}' and \mathscr{E}'_p denote the dual spaces of \mathscr{E} and \mathscr{E}_p , respectively. We can use the Riesz representation theorem to identify \mathscr{E}_0 with its dual space \mathscr{E}'_0 . Then we get the following continuous inclusions:

²⁰⁰⁰ Mathematics Subject Classification. 60H40, 60E10, 46F25, 28C20

Key words and phrases. white noise analysis, characterization theorem, log-convexity, Legendre transform, growth function.

^{*}Supported by a postdoctoral fellowship of International Institute for Advanced Studies.