Нікозніма Матн. J. **31** (2001), 263–289

Cobordism group with local coefficients and its application to 4-manifolds

Ichiji KURAZONO

(Received July 28, 2000) (Revised January 16, 2001)

ABSTRACT. For a pair (X, A) of topological spaces and $w \in H^1(X; \mathbb{Z}_2)$ the cobordism group $\Omega_n(X, A; \mathscr{S}_w)$ with local coefficients is introduced. If X is a CW complex and \mathscr{S}_w is a local system over X determined by w, then we have an Atiyah-Hirzeburch spectral sequence $E_{p,q}^2 = H_p(X; \Omega_q \otimes \mathscr{S}_w) \Rightarrow \Omega_{p+q}(X; \mathscr{S}_w)$ which is regular and hence convergent. For a connected CW complex X the map $\mu : \Omega_4(X; \mathscr{S}_w) \to H_4(X; \mathscr{S}_w)$, defined by $\mu([M, f, \varphi]) = f_*(\varphi_*(\sigma))$, is a surjection and its kernel is $\Omega_4 \otimes \mathbb{Z}_2$ if $w \neq 0$, where σ is a fundamental homology class with respect to the orientation sheaf of a manifold M and φ is a local orientation. The closed 4-manifolds with finitely presentable fundamental group π and the first Stiefel-Whitney class induced from w are almost classified modulo connected sums with simply connected manifolds by the quotient $H_4(B\pi; \mathscr{S}_w)/(\operatorname{Aut} \pi)_*^w$, and precisely in the case that π is abelian.

1. Introduction

The oriented cobordism functor $\{\Omega_*(X, A), \varphi_*, \partial\}$ satisfies the first six Eilenberg-Steenrod axioms for the category of pairs of topological spaces and maps [2]. So, for any CW complex X the Atiyah-Hirzeburch spectral sequence

$$E_{p,q}^2 = H_p(X; \Omega_q) \Rightarrow \Omega_{p+q}(X)$$

is regular and hence convergent in the sense of [1]. Using this spectral sequence, the classification of oriented closed 4-manifolds having the finitely presentable fundamental group π modulo connected sums with simply connected manifolds is given by the quotient $H_4(B\pi; \mathbb{Z})/(\operatorname{Aut} \pi)_*$ [4], [7].

Our goal of this paper is to extend the above result to the non-orientable case. We introduce a cobordism group $\Omega_n(X, A; \mathscr{S}_w)$ for a pair (X, A) of topological spaces and $w \in H^1(X; \mathbb{Z}_2)$, which reduces to $\Omega_n(X, A)$ if w = 0. Let $w_1 : BO_r \to K(\mathbb{Z}_2, 1)$ be the map corresponding to the first Stiefel-Whitney class. Consider w to be a map of X to $K(\mathbb{Z}_2, 1)$, and let

²⁰⁰⁰ Mathematics Subject Classification. 55M30, 55N25, 55T25, 57M50, 57N13

Key words and phrases. cobordism group with local coefficients, Atiyah-Hirzeburch spectral sequence, weakly stable classification of closed 4-manifolds, Lusternik-Schnirelmann π_1 -category