Нікозніма Матн. J. **32** (2002), 1–6

The Hausdorff dimension of deformed self-similar sets

Tae Hee KIM, Sung Pyo HONG and Hung Hwan LEE (Received October 12, 1999) (Revised June 12, 2001)

ABSTRACT. We define deformed self-similar sets which are generated by a sequence of similar contraction mappings $\{\phi_{\sigma} : \sigma \in S^*\}$ on \mathbf{R}^d , ϕ_{σ} having its contraction ratio r_{σ} , and calculate thier Hausdorff dimension.

1. Introduction

Hutchinson [4] proved that there exists a unique compact set $F \subset \mathbf{R}^d$ such that $F = \bigcup_{i=1}^n \phi_i(F)$ for any given finite set $\{\phi_i\}_{i=1}^n$ of similarities in \mathbf{R}^d with ratio r_i , $1 \le i \le n$. He also showed that $\dim_H F = \dim_B F = \dim_p F = s$ and $\sum_{i=1}^n r_i^s = 1$ if $\{\phi_i\}_{i=1}^n$ satisfies the open set condition, that is, there exists a bounded non-empty open set O such that $\bigcup_{i=1}^n \phi_i(O) \subset O$ and $\phi_i(O) \cap \phi_j(O) = \emptyset$ if $i \ne j$.

Recently, S. Ikeda [5] defined the loosely self-similar set F which is generated by a sequence of mappings $\{\phi_{i_1i_2...i_k}\}$ $(i_j \in \{1, 2, ..., n\})$, $\phi_{i_1i_2...i_k}$ having its contraction ratio r_{i_k} , and showed that $\dim_H F = s$ and $\sum_{i=1}^n r_i^s = 1$ if $\{\phi_{i_1i_2...i_k}\}$ satisfies the disjoint condition.

In this paper, we will generalize loosely self-similar sets [5] and perturbed Cantor sets [1]. The construction is as follows.

Fix $m \ge 2$, write $S_k = \{1, 2, ..., m\}^k$ and $S^* = \bigcup_{k=1}^{\infty} S_k$. Consider a sequence of similar contraction mappings $\{\phi_{\sigma} : \sigma \in S^*\}$ on \mathbf{R}^d . Suppose that each ϕ_{σ} has a contraction ratio r_{σ} , that is, $|\phi_{\sigma}(x) - \phi_{\sigma}(y)| = r_{\sigma}|x - y|$ for any $x, y \in \mathbf{R}^d$, where $|\cdot|$ is the Euclidean norm. We further assume there exists $0 < \alpha, \beta < 1$ such that $\alpha < r_{\sigma} < \beta$ for any $\sigma \in S^*$ and there exists a bounded open set $V \subset \mathbf{R}^d$ such that

(1) $\phi_{\sigma}(V) \subset V$ for any $\sigma \in S^*$

(2)
$$\phi_{i_1i_2...i_{k-1}i_k}(V) \cap \phi_{i_1i_2...i_{k-1}i_{k'}}(V) = \emptyset, \ i_k \neq i'_k$$

It is obvious that there exists a non-empty compact set $X \subset V$ such that the properties (1) and (2) are satisfied when V is replaced by X.

²⁰⁰⁰ Mathematics Subject Classification. 28A78, 28A80.

Key words and phrases. Deformed self-similar set, Hausdorff measure, Hausdorff dimension.

The first author was supported by KOSEF and the second author was supported by Com² MaC-KOSEF. The third author was supported by TGRC and Korean Research Foundation 1998-015-D00019.