The Hausdorff dimension of deformed self-similar sets

Tae Hee Kim, Sung Pyo Hong and Hung Hwan Lee
(Received October 12, 1999)
(Revised June 12, 2001)

Abstract

We define deformed self-similar sets which are generated by a sequence of similar contraction mappings $\left\{\phi_{\sigma}: \sigma \in S^{*}\right\}$ on $\mathbf{R}^{\mathbf{d}}, \phi_{\sigma}$ having its contraction ratio r_{σ}, and calculate thier Hausdorff dimension.

1. Introduction

Hutchinson [4] proved that there exists a unique compact set $F \subset \mathbf{R}^{d}$ such that $F=\bigcup_{i=1}^{n} \phi_{i}(F)$ for any given finite set $\left\{\phi_{i}\right\}_{i=1}^{n}$ of similarities in \mathbf{R}^{d} with ratio $r_{i}, 1 \leq i \leq n$. He also showed that $\operatorname{dim}_{H} F=\operatorname{dim}_{B} F=\operatorname{dim}_{p} F=s$ and $\sum_{i=1}^{n} r_{i}^{s}=1$ if $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfies the open set condition, that is, there exists a bounded non-empty open set O such that $\bigcup_{i=1}^{n} \phi_{i}(O) \subset O$ and $\phi_{i}(O) \cap \phi_{j}(O)=\emptyset$ if $i \neq j$.

Recently, S. Ikeda [5] defined the loosely self-similar set F which is generated by a sequence of mappings $\left\{\phi_{i_{1} i_{2} \ldots i_{k}}\right\}\left(i_{j} \in\{1,2, \ldots, n\}\right), \phi_{i_{1} i_{2} \ldots i_{k}}$ having its contraction ratio $r_{i_{k}}$, and showed that $\operatorname{dim}_{H} F=s$ and $\sum_{i=1}^{n} r_{i}^{s}=1$ if $\left\{\phi_{i_{1} i_{2} \ldots i_{k}}\right\}$ satisfies the disjoint condition.

In this paper, we will generalize loosely self-similar sets [5] and perturbed Cantor sets [1]. The construction is as follows.

Fix $m \geq 2$, write $S_{k}=\{1,2, \ldots, m\}^{k}$ and $S^{*}=\bigcup_{k=1}^{\infty} S_{k}$. Consider a sequence of similar contraction mappings $\left\{\phi_{\sigma}: \sigma \in S^{*}\right\}$ on $\mathbf{R}^{\mathbf{d}}$. Suppose that each ϕ_{σ} has a contraction ratio r_{σ}, that is, $\left|\phi_{\sigma}(x)-\phi_{\sigma}(y)\right|=r_{\sigma}|x-y|$ for any $x, y \in \mathbf{R}^{\mathbf{d}}$, where $|\cdot|$ is the Euclidean norm. We further assume there exists $0<\alpha, \beta<1$ such that $\alpha<r_{\sigma}<\beta$ for any $\sigma \in S^{*}$ and there exists a bounded open set $V \subset \mathbf{R}^{\mathbf{d}}$ such that
(1) $\phi_{\sigma}(V) \subset V$ for any $\sigma \in S^{*}$
(2) $\phi_{i_{1} i_{2} \ldots i_{k-1} i_{k}}(V) \cap \phi_{i_{1} i_{2} \ldots i_{k-1} i_{k}}(V)=\emptyset, i_{k} \neq i_{k}^{\prime}$.

It is obvious that there exists a non-empty compact set $X \subset V$ such that the properties (1) and (2) are satisfied when V is replaced by X.

[^0]
[^0]: 2000 Mathematics Subject Classification. 28A78, 28A80.
 Key words and phrases. Deformed self-similar set, Hausdorff measure, Hausdorff dimension.
 The first author was supported by KOSEF and the second author was supported by Com ${ }^{2} \mathrm{MaC}$ KOSEF. The third author was supported by TGRC and Korean Research Foundation 1998-015D00019.

