Нікозніма Матн. J. **32** (2002), 379–387

A strong limit theorem expressed by inequalities for the sequences of absolutely continuous random variables

Wen LIU and Yujin WANG (Received September 4, 2000) (Revised April 17, 2002)

ABSTRACT. Let $\{X_n, n \ge 1\}$ be an arbitrary sequence of dependent absolutely continuous random viariables, $\{B_n, n \ge 1\}$ be Borel sets on the real line, and $I_{B_n}(x)$ be the indicator function of B_n . In this paper, the limit properties of $\{I_{B_n}(X_n), n \ge 1\}$ are studied, and a kind of strong limit theorem represented by inequalities with random bounds is obtained.

1. Introduction

Let $\{X_n, n \ge 1\}$ be a sequences of absolutely continuous random variables on the probability space (Ω, \mathcal{F}, P) with the joint density function $g_n(x_1, \ldots, x_n)$, $n = 1, 2, \ldots$ Let $f_k(x_k)$, $k = 1, 2, \ldots$, be an arbitrary sequence of density functions, and call $\prod_{k=1}^n f_k(x_k)$ the reference product density. Let

$$r_n(\omega) = \begin{cases} \left[\prod_{k=1}^n f_k(X_k)\right] \middle/ g_n(X_1, \dots, X_n) & \text{if the denominator } > 0; \\ 0 & \text{otherwise,} \end{cases}$$
(1)

where ω is a sample point. In statistical terms, $r_n(\omega)$ is called the likelihood ratio, which is of fundamental importance in the theory of testing the statistical hypotheses (cf. [1, p. 483]; [3, p. 388]). Let

$$r(\omega) = -\liminf_{n} \frac{1}{n} \ln r_n(\omega)$$
(2)

with $\ln 0 = -\infty$. $r(\omega)$ is called asymptotic log-likelihood ratio. Obviously, $r_n(\omega) \equiv 0$ if

²⁰⁰⁰ Mathematics Subject Classification. 60F15, 60F99

Keywords and phrases. Strong limit theorem represented by inequalities, Strong law of large numbers, Likelihood ratio, Supermartingale.