Нікозніма Матн. J. **33** (2003), 229–251

Hardy's theorem for the Jacobi transform

Nils Byrial ANDERSEN (Received August 19, 2002) (Revised October 18, 2002)

ABSTRACT. Let $\alpha\beta = \frac{1}{4}$ for positive constants α, β . Hardy's theorem states that the function $f(x) = e^{-\alpha x^2}$ is the only function (modulo constants) satisfying the decay conditions $f(x) = O(e^{-\alpha x^2})$ and $\hat{f}(x) = O(e^{-\beta x^2})$, where \hat{f} denotes the Fourier transform of f. We generalise this theorem and its L^p analogues to the Jacobi transform. We then consider the Fourier transform on the real hyperbolic spaces $SO_o(m,n)/SO_o(m-1,n), m, n \in \mathbb{N}$, and show, as an application of our results for the Jacobi transform, that Hardy's theorem only can be generalised to the Riemannian (m = 1) case. It can, in particular, not be generalised to $SL(2, \mathbb{R}) \simeq SU(1, 1) \simeq SO_o(2, 2)/SO_o(1, 2)$.

1. Introduction

Let f be a measurable function on **R** and let \hat{f} be its Fourier transform. Assume that $|f(t)| \leq Ce^{-\alpha|t|^2}$ and $|\hat{f}(\lambda)| \leq Ce^{-\beta|\lambda|^2}$, where C, α, β are positive constants. Hardy's theorem, [11], states that if:

- (1) $\alpha\beta > \frac{1}{4}$, then f = 0.
- (2) $\alpha\beta = \frac{1}{4}$, then $f(t) = const. e^{-\alpha t^2}$.
- (3) $\alpha\beta < \frac{1}{4}$, then there are infinitely many linearly independent solutions.

We note that (2) implies (1) and (3). The central part of Hardy's theorem, the $\alpha\beta = \frac{1}{4}$ case, can be reformulated in terms of the Heat kernel: $h_t(x) := (4\pi t)^{-1/2} e^{-x^2/4t}$, t > 0. We note that $\hat{h}_t(x) = e^{-tx^2}$, and thus the only functions satisfying (2) are constant multiples of h_β , with $\beta = 1/4\alpha$. The $\alpha\beta > \frac{1}{4}$ case is also known as Hardy's uncertainty principle: f and \hat{f} cannot both be *very* rapidly decreasing. A Generalisation of Hardy's theorem with L^p growth conditions was furthermore given by Cowling and Price in [6].

²⁰⁰⁰ Mathematics Subject Classification. Primary 43A85, 22E30.

Key words and phrases. Hardy's theorem, Jacobi transform, hyperbolic spaces, Fourier transform. The author is supported by a research grant from the Australian Research Council (ARC).