Нікозніма Матн. J. **33** (2003), 137–156

The structure of the general chromatic E_1 -term $\operatorname{Ext}^0_{\Gamma(2)}(BP_*, M_2^1)$ at the prime 2

Hirofumi NAKAI and Daichi YORITOMI (Received March 22, 2002) (Revised August 20, 2002)

ABSTRACT. Ravenel [8] has introduced *p*-local spectra T(m) for $m \ge 0$. The Adams-Novikov E_2 -term converging to $\pi_*(T(m))$ is isomorphic to

 $\operatorname{Ext}^*_{\Gamma(m+1)}(BP_*, BP_*),$

where $\Gamma(m+1) = BP_*[t_{m+1}, t_{m+2}, ...]$, and thus we may follow the chromatic method introduced in [4] to compute the E_2 -term. One of the crucial point is to determine the Ext groups $\operatorname{Ext}_{\Gamma(m+1)}^*(BP_*, M_s^n)$. In particular $\operatorname{Ext}_{\Gamma(m+1)}^0(BP_*, M_2^1)$ has already been known except for p = 2 and m = 1. In this paper we will give the explicit description of the last unknown case.

1. Introduction

The homotopy groups of Ravenel spectrum T(m) give information on the homotopy groups of spheres using "the method of infinite descent", which was the main subject of [8] Chapter 7. Its *BP*-homology group is given by $BP_*(T(m)) \cong BP_*[t_1, \ldots, t_m]$. The Adams-Novikov E_2 -term for T(m)is

$$\operatorname{Ext}_{BP_{*}(BP)}^{*}(BP_{*}, BP_{*}(T(m))),$$

which is isomorphic to $\operatorname{Ext}_{\Gamma(m+1)}(BP_*, BP_*)$ by the change-of-rings isomorphism. So this object is computable using the chromatic spectral sequence introduced in [4]. Define comodules M_m^n by

$$M_m^n = v_{m+n}^{-1} BP_* / (p, \dots, v_{m-1}, v_m^{\infty}, \dots, v_{m+n-1}^{\infty})$$

as usual. Then the chromatic E_1 -term is

$$E_1^{s,t} = \operatorname{Ext}_{\Gamma(m+1)}^t(BP_*, M_0^s).$$

²⁰⁰⁰ Mathematics Subject Classification. 55Q10, 55Q51.

Key words and phrases. Adams-Novikov spectral sequence, Chromatic spectral sequence, Ravenel spectrum.