Нікозніма Матн. J. **35** (2005), 143–157

Homotopy types of *m*-twisted CP⁴'s

Dedicated to the memory of Prof. Masahiro Sugawara

Kohhei YAMAGUCHI (Received April 8, 2004) (Revised September 21, 2004)

ABSTRACT. We study the homotopy type classification problem of *n* dimensional *m*-twisted complex projective spaces for the case n = 4. In particular, we determine the number of homotopy types of *m*-twisted **CP**⁴'s when $m \ge 1$ is an odd integer.

1. Introduction

Let $n \ge 2$ be an integer and let M be a simply-connected 2n dimensional finite Poincaré complex. For an integer $m \ge 0$, M is called an *m*-twisted \mathbb{CP}^n if there is an isomorphism $H_*(M, \mathbb{Z}) \cong H_*(\mathbb{CP}^n, \mathbb{Z})$ with the condition $x_2 \cdot x_2 = mx_4$, where $x_{2k} \in H^{2k}(M, \mathbb{Z}) \cong \mathbb{Z}$ denotes the corresponding generator (k = 1, 2). Any *m*-twisted \mathbb{CP}^n is homotoy equivalent to a CW complex of the form

$$M \simeq S^2 \cup_{mn} e^4 \cup e^6 \cup \dots \cup e^{2n-2} \cup e^{2n} \qquad \text{(homotopy equivalence)},$$

and it has the homotopy type of 2*n* dimensional closed topological manifolds ([6]). Let \mathcal{M}_m^n be the set consisting of all the homotopy equivalence classes of *m*-twisted \mathbb{CP}^{n} 's. For example, when n = 2, $\mathcal{M}_1^2 = \{[\mathbb{CP}^2]\}$ and $\mathcal{M}_m^2 = \emptyset$ if $m \neq 1$. When n = 3, the following result is known:

THEOREM 1.1 ([11] (cf. [4])). If $m \ge 0$ is an integer,

$$\operatorname{card}(\mathscr{M}_m^3) = \begin{cases} 1 & \text{if } m \equiv 1 \pmod{2}, \\ 3 & \text{if } m \equiv 0 \pmod{2}, \end{cases}$$

where card(V) denotes the cardinal number of a set V.

In general, it is known that $\mathcal{M}_m^{2k+1} \neq \emptyset$ for any $m, k \ge 2$ (cf. [2]), and we have infinitely many non-trivial examples of *m*-twisted \mathbb{CP}^{2k+1} 's. On the other

²⁰⁰⁰ Mathematics Subject Classification. Primary 55P10, 55P15; Secondly 57P10.

Key Words and Phrases. Poincaré complex, homotopy type, Whitehead product.

Partially supported by Grant-in-Aid for Scientific Research (No. 13640067 (C)(2)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.