Complete and Simpler Treatment of Wave Geometry.

By

Takasi SIBATA and Kakutarô MORINAGA.

(Received December 10, 1935.)

§1. Introduction.

In wave geometry⁽¹⁾ we have defined the expression for the metric in general microscopic space by

$$ds\Psi = dx^i \gamma_i \Psi$$

where γ 's are 4-4 matrices satisfying the equation

$$\gamma_{(i}\gamma_{j)}=g_{ij}I$$

and ψ is a 1-4 matrix given as a solution of the "unknown Dirac equation." And we have investigated the transformations and parallel displacement which make $ds\psi = 0$ invariant. In this paper, from another point of view we shall consider the parallel displacements and the differential equations for ψ obtained by this parallelism.

§ 2. Vectors which satisfy the relation $\rho^i \gamma_i \Psi = 0$.

First, we will show that there exists a vector ρ^i satisfying the relation :

$$\rho^i \gamma_i \Psi = 0. \tag{2.1}$$

Since γ_i are expressed as

$$\gamma_i = U h_i^j \mathring{\gamma}_j U^{-1} \tag{2.2}$$

where h_i^i are defined by

$$g_{ij}=\sum\limits_{l=1}^{4}h_{i}^{l}h_{j}^{l}$$
 ,

⁽¹⁾ K. Morinaga, Wave Geometry, This Journal, 5 (1935), 151.