On Systems of Simultaneous Functional Equations.

By

Kiyoshi TODA.

(Received Sept. 20, 1935.)

The object of this paper is to search for a system of functions that are linearly transformed when their variables are linearly transformed.

(I)

Problem: Under the assumptions that

- (i) The equation (1.1) below is satisfied independently of x's and a's,
- (ii) $w^{\star\lambda}(x)$, $K^{\star\lambda}_{\mu\nu}(a)$ have first partial derivatives, to solve the following functional equation

(1.1)
$$w^{\star\lambda}(X) = \sum_{\mu,\nu} K^{\star\lambda}_{\mu\nu}(a) \cdot w^{\mu\nu}(x), \qquad (\varkappa, \lambda = 1, 2, \ldots, n)$$

 $X^i = \sum_r a^i_r x^r$, $(i = 1, 2, \dots, n)$

where

and
$$w^{\star\lambda}(x)$$
, $K^{\star\lambda}_{\mu\nu}(a)$ represent respectively functions of x's and a's.
Solution: Differentiating (1.1) with a_i^i , we have

(1.2)
$$\frac{\partial w^{\star\lambda}(X)}{\partial X^{i}} \cdot \frac{\partial X^{i}}{\partial a^{i}_{i}} = \sum_{\mu,\nu} \frac{\partial K^{\star\lambda}_{\mu\nu}(a)}{\partial a^{i}_{i}} \cdot w^{\mu\nu}(x).$$

Put $a_j^i = \delta_j^i =$ Kronecker's delta, then we have a system of differential equations with respect to x^i ,

(1.3)
$$x^{i} \frac{\partial w^{x\lambda}(x)}{\partial x^{i}} = \sum_{\mu,\nu} L^{x\lambda}_{\mu\nu} \cdot w^{\mu\nu}(x),$$

where

$$L^{\star \lambda}_{\mu
u} = \left[egin{array}{c} \partial K^{\star \lambda}_{\mu
u} \ \partial a^{\star}_i \end{array}
ight]_{a-\delta}$$

For the time being, i is considered as being fixed. (1.3) reduces,