Space of Differential Set Functions.

By

Fumitomo MAEDA.

(Received Sept. 20, 1935.)

In my previous papers,⁽¹⁾ I have investigated the space of set functions $\mathfrak{L}_2(\beta)$. It is defined as follows: Let \mathfrak{R} be a closed family $(\sigma$ -Körper) of all Borel subsets of a separable metric space \mathfrak{Q} , and $\beta(E)$ be a completely additive, non-negative set function defined in \mathfrak{R} . If $\phi(E)$ be a completely additive set function defined in \mathfrak{R} , which is absolutely continuous with respect to $\beta(E)$ and $\int_{\mathfrak{Q}} |D_{\beta(E)}\phi(\mathfrak{a})|^2 d\beta(E)$ is finite, then I said that $\phi(E)$ belongs to $\mathfrak{L}_2(\beta)$. $\mathfrak{L}_2(\beta)$ is a Hilbert space with the inner product

$$(\phi, \psi) = \int_{\mathcal{Q}} D_{\beta(E)} \phi(a) \overline{D_{\beta(E)}} \psi(a) d\beta(E) .^{(2)}$$

In these previous papers, I have assumed that $\beta(\mathcal{Q})$ is finite. But in the applications, the case often occurs where $\beta(\mathcal{Q})$ is infinite. In this case, the usual definition of an integral is inconvenient. But A. Kolmogoroff⁽³⁾ gave a new definition of an integral which is irrespective of the finiteness of $\beta(\mathcal{Q})$. In his definition of an integral, it is unnecessary that set functions are defined for all sets in a closed family; they need only be defined for decomposed sets of a multiplicative system. Such set functions, I call, in this paper, differential set functions. Using Kolmogoroff's integral, we can define the space of differential set functions in the same way as the space of ordinary set functions.

⁽¹⁾ F. Maeda, "On the Space of Real Set Functions," this journal, 3 (1933), 1-42; "On Kernels and Spectra of Bounded Linear Transformations," ibid., 243-273; "Kernels of Transformations in the Space of Set Functions," this journal, 5 (1935), 107-116; "Transitivities of Conservative Mechanism," this volume, 1-18.

⁽²⁾ If we do not demand the separability of $\mathfrak{L}_2(\beta)$, we can, more generally, take the closed family \mathfrak{R} in an abstract space \mathfrak{Q} as the domain of definition of set functions. (2) A Kolmogorant "Untergraduation in the domain of definition of set functions.

⁽³⁾ A. Kolmogoroff, "Untersuchungen über den Integralbegriff," Math. Ann. 103 (1930), 654-682.