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In my previous papers,<!) I have investigated the space of set 
functions ~(/j). It is defined as follows: Let ~ be a closed family 
(11-Korper) of all Borel subsets of a separable metric space !J, and p(E) 
be a completely additive, non-negative set function defined in ~- If 
¢(E) be a completely additive set function defined in ~. which is ab-

solutely continuous with respect to P(E) and LI DfJ<E>'P(,p,) 12 dfj(E) is 

finite, then I said that ¢(E) belongs to 2ifi). 2J/j) is a Hilbert space 
with the inner product ~-~ · 

(¢, ¢) = LnfJ<E>¢(a)DfJ(E)(f(a)dfj(E) .<2> . 

In these previous papers, I have assumed that /j(.Q) is finite. But 
in the applications, the case often occurs where /j(.Q) is infinite. In 
this case, the usual definition of an integral is inconvenient. But A. 
Kolmogoroff<3> gave a new definition of an integral which is irrespective 
of the finiteness of /j(.Q). In his definition of an integral, it is un
necessary that set functions are defined for all sets in a closed family ; 
they need only be defined for decomposed sets of a multiplicative 
system. Such set functions, I call, in this paper, differential set func
tions. Using Kolmogoroff's integral, we can define the space of 
differential set functions in the same way as the space of ordinary set 
functions. 
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