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A. Tarski'n has recently obtained interesting results about the 
relations between the propositional calculi and topologies, which lead to 
the question: What are the propositional calculi in lattice terms? The 
classical propositional calculus is the Boolean Algebra. Here I shall.show 
that the intuitionistic propositional calculus is a residuated lattice closed 
with respect to the lattice operation, meet, which has a null element. 
For convenience we refer to A. Tarski's set of postulates of proposi
tional calculi, and the proof shall be effected by characterizing the im -
plication and negation in lattice terms. 
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§ 1. Let -, "', v, -, be the four fundamental operators in the 
propositional calculi, or logical constants, the first three of which are 
binary operators, but the last is unary. Let A, B, C, .... , be expres
sions formulated from the propositional variables and the above four 
operators. Following A. Tarski we shall here reproduce the postulates 
of the propositional calculi :m 

( i ) A-(B-A). 

( ii ) [A-(B-C)]➔ [(A-B)-(A-C)]. 

( iii ) (A A B)-> A . 

(iv) (AAB)-B. 

( V ) (C-A)->{(C-B)-[C-(A AB)]}. 

( vi ) A - (A V B) . 

(vii) B-(A v B). 

(viii) CA-c>-{<B-c)-[(A v B)-c]}. 

(1) A. Tarski, Fundamenta Math. 31 (1939), 103-134. 


