DEPENDENCE OF QUADRATIC QUANTITIES IN A NORMAL SYSTEM

INDEPENDENCE OF QUADRATIC QUANTITIES IN A NORMAL SYSTEM

By

Toziro OGASAWARA and Masayuki TAKAHASHI

(Received June 25, 1950)

In the study of independence of quadratic quantities in a normal system Craig-Sakamoto's lemma is a fundamental one⁽¹⁾. We give here its simple proof, the method of which will also enable us in a short way to characterize quadratic quantities distributed in χ^2 -distributions (Theorem 1) and to obtain an analogous result for Wishart's distributions (Theorem 14). In Part I we investigate the independence of quadratic quantities in a normal system to obtain results related to Cochran's theorem, and in Part II we extend results so obtained to the case of Wishart's distributions.

Part I. χ^2 -distributions and Cochran's theorem

§ 1. Craig-Sakamoto's lemma.

In the following, unless otherwise stated, A, B, C, ... stand for real symmetric matrices of order $k \cdot k$.

Lemma 1. The following two conditions are equivalent:

(i)
$$AB = 0$$

(ii)
$$|E-sA||E-tB| = |E-sA-tB|$$

for arbitrary real scalars s, t.

Proof. Since evidently (i) implies (ii), so we shall show the converse. Let $K = (E - sA)^{-1} = E + sA + s^2A^2 + ...$, then we may write (ii) as

$$|E-tB| = |E-tKB|$$

or

$$\sum_{n=1}^{\infty}\frac{t^n}{n}\,trB^n\,=\,\sum_{n=1}^{\infty}\frac{t^n}{n}\,tr\,(KB)^n\,.$$

Comparing the coefficients of s^2t^2 on both sides of this equation, we have

$$tr(ABAB+2A^2B^2)=0.$$

1 -

⁽¹⁾ A. T. Craig (1). H. Sakamoto (1). Numbers in brackets refer to the list of references at the end of this paper.