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The set of all closed linear manifolds of a (not necessarily separable) Hilbet 

space is a (I) complete, (II) relatively atomic, and (IV) orlhocomPlemented lattice 

satisfying (III) the exchange axiom of MacLane [lJn, together with the following 

condition: 

(V) If b, c are orthogonal elements, then it holds (b, c)M, i.e., a~ c implies 
(a,._, b) ,,...._ c=a ,._, (b ,,...._ c). 

The purpose of this paper is to study an abstract lattice L satisfying these five 

conditions (I)-(V). The main results are as follows2> : 

(1) Any element a of L has an orthogonal basis, that is, there exists an-ortho

gonal system of points whose join is equals to a. 
(2) If P, Q are both orthogonal bases of an element, then P and Q hav~ the 

same cardinal numbers provided that L satisfies furthermore an "counrability con

dition of dependence ".3> 

(3) Any quotient lattice of L has the same properties as L. 

(4) L is a direct sum of irreducible sublattices. 

(5) Projections and permutability of elements are defined and their interrelation 

is investigated. 

§ 1. The lattice of closed linear manifolds of a Hibert space. 

Let ~ be a (not necessarily separable) Hilbert space, and let the set of all closed 

linear manifolds of .p he denoted by L. It is well known that L is a complete, 

relatively atomic, and orthocomplemented lattice, partially ordered by set-inclusion. 

Croisot [l] has shown that L satisfies the exchange axiom of MacLane4>. Hence we 

have the following: 

1) The numbers in square brackets refer to the list of references at the end of the paper. 
2) An exchange lattice of MacLane [1], which is equivalent to a "matroid lattice" in the ter

minology of F. Maeda [3], is a complete, relatively atomic lattice satisfying the exchange. axiom 
together with the "finiteness condition of dependence". MacLane [1] has shown that analogous 
theorems to (1)-(3) above are valid in any exchange lattice (cf. ibid. 458, Theorem 3, 4 and 6); 
( 4) has been iihown for an exchange lattice by U. Sasaki and S. Fujiwara [1] 188, Theorem 4. 

3) Cf. the condition (VI) in Theorem 2.2 below. 
4) Cf. Croisot [1] 259, Lemma 1 and 261, Lemma 3 which are respectively (·~") and (~") in 

Remark (2) below. 
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