Theory of the Spherically Symmetric Space-Times. VII. Space-Times with Corresponding Geodesics¹⁾

Ву

Hyôitirô TAKENO and Mineo IKEDA

(Received Sept. 3, 1952)

§ 1. Introduction

Let n dimensional Riemannian spaces V_n and V_n^* be defined by the fundamental forms

$$ds^2 = g_{ij} dx^i dx^j$$
 and $ds^{*2} = g_{ij}^* dx^i dx^j$

respectively with common coordinates x^i . A necessary and sufficient condition that their geodesics correspond with each other is given by

$$\left\{ \begin{array}{l} i\\ ik \end{array} \right\}^* = \left\{ \begin{array}{l} i\\ ik \end{array} \right\} + \delta_j^i \psi_k + \delta_k^i \psi_j , \qquad (\psi_i = \mathcal{V}_i \psi) , \qquad (1.1)$$

where ψ is a scalar, $\binom{i}{jk}$ and $\binom{i}{jk}^*$ are the Christoffel symbols formed with respect to g_{ij} and g_{ij}^* respectively and F_i is the covariant derivative with respect to g_{ij} .

In this paper we shall prove that when V_4 is an S_0 , V_4^* is also s. s. This is a generalization of the well known theorem concerning spaces of constant curvature.²⁾ Further some other properties concerning the S_0 's with corresponding geodesics will be made clear.

§ 2. Fundamental theorem

In this section, first we shall prove the following fundamental theorem: Theorem [2.1] The only four dimensional Riemannian spaces with fundamental forms of signature -2 whose geodesics correspond to the geodesics of an S_0 are s. s. space-times.

Proof. Let the geodesics of a V_4^* correspond to the geodesics of an S_0 . We shall take a standard coordinate system for g_{ij} of the S_0 . Then the fundamental form of the S_0 is

$$ds^{2} = -A(r,t) dr^{2} - B(r,t) (d\theta^{2} + \sin^{2}\theta d\phi^{2}) + C(r,t) dt^{2}$$
(2.1)