Orthogonality Relation in the Analysis of Variance II

By

Tôzirô Ogasawara and Masayuki Takahashi

(Received March 14, 1953)

Let $\mathfrak{C}, \mathfrak{A}_1, \dots, \mathfrak{A}_p$ (p > 1) be non trivial classifications. We shall say that \mathfrak{C} is decomposed into $\mathfrak{A}_1, \dots, \mathfrak{A}_p$ if the relation

$$P_{\mathfrak{C}} = \sum_{k=1}^{p} P_{\mathfrak{A}_{k}}$$

holds. Here we may always assume that the \mathfrak{A} are labeled so that $d(\mathfrak{A}_1) \geq d(\mathfrak{A}_2) \geq \cdots \geq d(\mathfrak{A}_p)$. By the result¹⁾ previously established p must be ≥ 3 . We show (§ 1) that (1) implies

(2)
$$d(\mathfrak{A}_1) d(\mathfrak{A}_2) \leq \sum_{k=3}^{p} d(\mathfrak{A}_k),$$

and that if the equality holds in (2), we must obtain

$$P_{\mathfrak{A}_1 \mathfrak{A}_2} = \sum_{k=3}^{p} P_{\mathfrak{A}_k}$$

that is, the interaction $\mathfrak{A}_1 \mathfrak{A}_2$ is decomposed into classifications $\mathfrak{A}_3, \dots, \mathfrak{A}_p$. Conversely (3) will imply (1) with $\mathfrak{E} = \mathfrak{A}_1 \wedge \mathfrak{A}_2$. Thus a decomposition of an interaction into classifications is regarded as a special case of a decomposition of a classification into classifications. It is our purpose to investigate the structure of such decompositions. The case p=3 was considered in our previous paper²⁾ and we proved that $P_{\mathfrak{E}} = P_{\mathfrak{A}_1} + P_{\mathfrak{A}_2} + P_{\mathfrak{A}_3}$ holds if and only if $\mathfrak{E} = \mathfrak{A}_1 \wedge \mathfrak{A}_2$, and $\mathfrak{A}_1 \mathfrak{A}_2 = \mathfrak{A}_3$. Here the latter relation implies that $\mathfrak{A}_1, \mathfrak{A}_2$ are regularly orthogonal and $d(\mathfrak{A}_1) = d(\mathfrak{A}_2) = d(\mathfrak{A}_3) = 1^3$. After some preliminary researches (§ 1) we investigate the structure of decompositions (1) for the cases $d(\mathfrak{A}_1) = p-2$, p-3, p-4. It is to be noted that (2) yields $d(\mathfrak{A}_1) \leq p-2$. Then we apply the results thus obtained to determine the structure of decompositions (1) for p=4, 5, 6 (§ 3). § 4 treats the decompositions of interactions. We show there that $P_{\mathfrak{B}\mathfrak{C}\mathfrak{D}} = P_{\mathfrak{A}_1} + P_{\mathfrak{A}_2} + P_{\mathfrak{A}_3} + P_{\mathfrak{A}_4}$ is characterized as the

- 27 -

¹⁾ Cf. [2]. Theorem 22. The numbers in square brackets refer to the list of references at the end of this paper.

²⁾ Cf. [2]. Theorem 23.

³⁾ Cf. [2]. Theorem 9.