On the Lattice of Projections of a Baer *-ring

By

Shûichirô MAEDA

(Received April 25, 1958)

Introduction

In my previous paper [8] it has been shown that in any complete lattice with independence relation " \perp " and equivalence relation " \sim " defined by the axioms $(1, \alpha)$ — $(1, \zeta)$ and $(2, \alpha)$ — $(2, \zeta)$ respectively, there can be introduced the dimension functions which satisfy the conditions of Definition 5.2 of [8]. As shown there ([8], §2), both continuous geometries and the lattice formed by the projections of any AW*-algebra are of this category.

In any Baer *-ring A, the lattice L of its projections satisfies the axioms $(1, \alpha)$ — $(1, \zeta)$ if $e \perp f$ stands for ef=0 $(e, f \in L)$, and we can define in L two kinds of equivalence: algebraic- and *-equivalences. The main purpose of this paper is to search for the conditions under which these equivalence relations satisfy the axioms $(2, \alpha)$ — $(2, \zeta)$, in order to introduce the dimension functions on L with requisite properties above referred to.

For this purpose, we shall replace the axiom of complete additivity $(2, \delta)$ by the weaker axioms: the axiom of finite additivity $(2, \delta_1)$ and that of complete additivity in the restricted sense $(2, \delta_2)$ whose precise statements are given in §1. We show (Theorem 1.1) that $(2, \delta)$ follows from $(2, \delta_1)$ and $(2, \delta_2)$ by the aid of the other axioms if we further assume the axioms $(2, \overline{\gamma})$ and $(2, \eta)$ below (§1), which are clearly verified in both continuous geometries and AW*-algebras (see [8], p. 218).

In §2, it is proved (Theorem 2.1) that algebraic equivalence (resp. *-equivalence) satisfies the axioms $(2, \alpha)$ — $(2, \zeta)$ if A satisfies the condition (a) (resp. (a^*)), which means that any two perspective projections are algebraically equivalent (resp. *-equivalent). And it is proved (Theorem 2.2) that if moreover A is finite then L is a continuous geometry, as in the case of an AW*-algebra (Kaplansky [3], Theorem 6.5).

The Baer *-ring which appears in Kaplansky [4] (resp. [5]) satisfies the condition (\bar{a}) (resp. (\bar{a}^*)) (Remark 2.2) which is stronger than (a) (resp. (a^*)). In §3, the reduction theory of a finite Baer *-ring A satisfying (\bar{a}) (resp. (\bar{a}^*)) is discussed by the aid of the reduction theory of continuous geometry. The main result (Theorem 3.1) is that the factor ring A/I of Aby a maximal restricted ideal I is also a finite Baer *-ring satisfying (\bar{a}) (resp. (\bar{a}^*)) and is irreducible, and the projections of A/I from a simple