JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 21, NO. 2, JULY, 1957

A Set-Theoretical Characterization of the Torus

By

Tadashi TANAKA

(Received April 25, 1957)

Introduction

We have known the set-theoretical properties which characterize the closed 2-cells and the 2-spheres among locally connected, compact, metric continua. In this paper we shall consider the set-theoretical properties which characterize the torus.

Most of the terminologies and notations are due to G. T. Whyburn's book [1].¹⁾

§1. Statement of Theorem

For the convenience of the statement of Theorem, we shall give the following definitions.

DEFINITION. A set M will be said to be *locally connected* at a point p $(p \in M \text{ or } p \notin M)$ if for any $\varepsilon > 0$ there exists $\delta > 0$ such that every two points x and y of M whose distances from p are less than δ lie together in a connected subset of M of diameter less than ε .

DEFINITION. Let M be a locally connected set and N a subset of M which separates a sufficiently small region containing a point of N. Let X=ab be a spanning arc of N in M, U a sufficiently small region in M containing a and V the component of U-N which contains a neighborhood of a in $\langle X \rangle$. We shall say that a spanning arc Y of N covers the end point a of X if Y is an arc such that $\langle Y \rangle$ lies in V and its end points are the end points of an arc in N which has a as an interior point.

In the following sections, we shall prove

THEOREM. In order that a locally connected, compact, metric continuum T be a torus it is necessary and sufficient that $T=J_1+J_2+R$ where

(a) J_i 's (i=1,2) are simple closed curves such that $J_1 \cdot J_2 = p$ is a single point, and $R (= T - (J_1 + J_2))$ is connected;

(b) J_i separates irreducibly a sufficiently small connected neighborhood R_i of J_i into exactly two regions R_i^1 and R_i^2 , being locally connected at any point of J_i ;

(c) if X=ab is any spanning arc of J_1+J_2 in T, then $\langle X \rangle$ separates R irreducibly, and moreover if Y is a spanning arc of J_1+J_2 in T which

¹⁾ Number in brackets refer to the references at the end of the paper.