A Note on Principal Ideals

By

Hazimu Satô

(Received April 25, 1957)

In his paper ([1], §9) M. Nagata proved the following interesting properties concerning prime ideals of principal ideals of Noetherian integral domains: (1) Let R be a Noetherian integral domain and $\mathfrak p$ a prime ideal of R. Then, if $\mathfrak p$ is a prime ideal of aR where a is a non zero element of $\mathfrak p$, $\mathfrak p$ is also a prime ideal of bR for any non zero element b of $\mathfrak p$. (2) Let R be a local domain with maximal ideal $\mathfrak m$, a be a non zero element of $\mathfrak m$, and b be an element of $aR:\mathfrak m$. When R is of dimension 1, it is assumed that a is irreducible and that $aR:\mathfrak m \neq R$. Then b is integral over aR.

These theorems played important roles in his proof of the following theorem: The derived normal ring of a Noetherian integral domain is a Krull ring. The purpose of this note is to give a simple proof of these theorems in the more general case when R is a Noetherian ring ([2], §4). Our proof is based on the following fact: In a Noetherian ring, a prime ideal \mathfrak{p} is a prime ideal of an ideal \mathfrak{q} if and only if $\mathfrak{p}=\mathfrak{q}:(p)$ for some $p \notin \mathfrak{q}$.

We shall now begin with

Lemma 1. Let R be a commutative ring and let a, b, c, d be elements of R. Assume that a is a non zero divisor, then, if ad=bc, $aR:bR\subseteq cR:dR$.

Proof. Let x be any element of aR:bR, then ay=bx $(y \in R)$; hence ayc=bxc=axd; since a is a non zero divisor, we have cy=dx; that is, $x \in cR:dR$.

Remark. If R is an integral domain and a, c non zero elements, then, from ad=bc, it follows that aR:bR=cR:dR.

Hereafter R will always denote a Noetherian ring.

Proposition 1. Let \mathfrak{p} be a prime ideal (isolated or embedded) of aR where a is a non zero divisor of R. Assume that c is a non zero divisor of R which belongs to \mathfrak{p} , then \mathfrak{p} is also a prime ideal (isolated or embedded) of cR ([2], Lemma 2, p. 299).

Proof. Since \mathfrak{p} is a prime ideal of aR, $\mathfrak{p}=aR:bR$ for some $b \notin aR$; hence cb=ad $(d \in R)$; consequently, from Lemma 1, $\mathfrak{p}=aR:bR=cR:dR$, and