C^{ℓ} -contact and C^{ℓ} -right equivalences of real semi-quasihomogeneous C^{ℓ} function germs

João Carlos Ferreira Costa, Marcelo José Saia and Carlos Humberto Soares Júnior

(Received September 6, 2012) (Revised June 25, 2013)

ABSTRACT. In this paper we investigate the C^{ℓ} versions of contact and right equivalences of real semi-quasihomogeneous C^{ℓ} function germs, $1 \leq \ell \leq \infty$. The C^{ℓ} -right equivalence implies C^{ℓ} -contact equivalence for any $1 \leq \ell \leq \infty$ and in this work we show, up to certain conditions, that for semi-quasihomogeneous C^{ℓ} function germs the converse is also true (Theorem 1). As a consequence, concerning the particular case of quasihomogeneous C^{ℓ} function germs, we also have a similar result (Corollary 1) which recover a known result of M. Takahashi [14] for $\ell = \infty$. We note that we are considering semi-quasihomogeneous function germs with no additional hypothesis of isolated singularity at zero.

1. Introduction

For any ℓ with $1 \le \ell \le \infty$, two C^{ℓ} function germs $f, g : (\mathbf{R}^n, 0) \to (\mathbf{R}, 0)$ are:

- C^{ℓ} -right equivalent if there exists a C^{ℓ} -diffeomorphism germ $h : (\mathbf{R}^{n}, 0)$ $\rightarrow (\mathbf{R}^{n}, 0)$ such that $g = f \circ h$.
- C^{ℓ} -contact equivalent if there exist a C^{ℓ} -diffeomorphism germ $h : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and a non-zero C^{ℓ} function germ $M : (\mathbf{R}^n, 0) \to \mathbf{R}$, with $M(0) \neq 0$, such that $g = M \cdot f \circ h$.

These two equivalence relations are denoted by C^{ℓ} - \mathscr{R} and C^{ℓ} - \mathscr{K} equivalences, respectively. Also, when $l = \infty$ we just write \mathscr{R} instead of C^{∞} - \mathscr{R} and \mathscr{K} instead of C^{∞} - \mathscr{K} , respectively.

It is easy to see that C^{ℓ} - \mathscr{R} -equivalence implies C^{ℓ} - \mathscr{K} -equivalence, but the converse does not hold in general. For instance, if $\ell = \infty$, the germs $f(x) = x^2$ and $g(x) = -x^2$ are \mathscr{K} -equivalent but they are not \mathscr{R} -equivalent. Hence, it seems an important problem to clarify the relationship between C^{ℓ} - \mathscr{R} and C^{ℓ} - \mathscr{K} equivalences. Recently, this subject was studied by some authors when $l = \infty$ and for the class of quasihomogeneous C^{∞} function germs (cf.

This work is partially supported by CAPES, CNPq and FAPESP.

²⁰¹⁰ Mathematics Subject Classification. Primary 58K40.

Key words and phrases. contact equivalence, right equivalence, semi-quasihomogeneous germs.