Groupoid and Cohomology with Values in a Sheaf of Groupoids

Shigeru Izuho
(Received March 5, 1963)

A. Grothendieck developed in [1]* systematically the notion of fibre space on a topological space X with structure sheaf \mathcal{G}, where \mathcal{G} is any sheaf of groups, and the notion of 1-cohomology set $H^1(X, \mathcal{G})$ of X with values in \mathcal{G}. He showed the important relation between the elements of $H^1(X, \mathcal{G})$ and the classes of fibre spaces on X with structure sheaf \mathcal{G}. And he obtained the exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groups on X.

A. Haefliger introduced in [2] the cohomology sets $H^0(X, \mathcal{G})$ and $H^1(X, \mathcal{G})$ of X with values in a sheaf of groupoids \mathcal{G} on X. And under the assumption that \mathcal{G} is transitive, he proved that there exists a one-to-one correspondence between $H^1(X, \mathcal{G})$ and $H^1(X, \mathcal{G}^f)$, where \mathcal{G}^f is the sheaf of groups associated to an element f of $Z^1(\mathcal{U}, \mathcal{G})$.

In this paper, it is shown that we can obtain an exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groupoids on X. We deal with the inverse problem of the relation between \mathcal{G} and \mathcal{G}^f which was shown by A. Haefliger: When a sheaf of groups \mathcal{G} on X is given, we may introduce a sheaf of transitive groupoids \mathcal{G} on X and an element f of $Z^1(\mathcal{U}, \mathcal{G})$ such that we have a one-to-one correspondence $H^1(X, \mathcal{G}) \rightarrow H^1(X, \mathcal{G}^f)$ where the latter set can be identified with $H^1(X, \mathcal{G})$. And when the sheaf of transitive groupoids \mathcal{G} has a unit section, it is shown that there exists a sheaf of groups \mathcal{G}, which is simpler than \mathcal{G}^f, such that $H^1(X, \mathcal{G})$ corresponds one-one to $H^1(X, \mathcal{G})$.

In the first half part, we prepare ourselves for treating the above-mentioned problems. In §1, we prove that two systems of axioms in the definition of groupoid—those in A. Haefliger's paper [2] and in P. Dedecker's [3]—are equivalent, and in §§2–3 we introduce the concept of normal subgroupoid and quotient groupoid. In §4, we refer to a representation of groupoid.

In the last half part, we solve the above-mentioned problems, applying the results in §§1–4 and introducing the concept of groupoid extension of a sheaf of groups.

§1. Axioms of groupoid.[2][3] A groupoid is a set \mathcal{G} which has a composition law $(x, y) \rightarrow xy$, defined for some pairs of elements $x, y (\in \mathcal{G})$ and

* The numbers in brackets refer to References at the end of this paper.