An Application of the Minimax Theorem to the Theory of Capacity

Makoto Ohtsuka

(Received September 22, 1965)

Let K be a compact Hausdorff space and $\Psi(x, y)$ be an extended realvalued lower semicontinuous function on $K \times K$ which does not assume the value $-\infty$. We denote by \mathscr{U}_K the class of non-negative unit Radon measures on K, and by S_{μ} the support of a measure μ . The potentials

$$\int \Phi(x, y) d\mu(y)$$
 and $\int \Phi(y, x) d\mu(y)$

will be denoted by $\Psi(x, \mu)$ and $\Psi(\mu, x)$ respectively. Our aim in this paper is to prove

THEOREM. It holds that

(1)
$$\inf_{\mu \in \mathscr{U}_{K}} \sup_{x \in S_{\mu}} \mathscr{O}(x, \mu) = \inf_{\mu \in \mathscr{U}_{K}} \sup_{x \in S_{\mu}} \mathscr{O}(\mu, x)$$

and

(2)
$$\sup_{\mu \in \mathscr{U}_K} \inf_{x \in S_{\mu}} \mathscr{O}(x, \mu) = \sup_{\mu \in \mathscr{U}_K} \inf_{x \in S_{\mu}} \mathscr{O}(\mu, x).$$

REMARK. The reciprocal of the value in (1) is taken as the definition of capacity in the Newtonian case, namely, when $\Psi(x, y) = |x - y|^{-1}$ in the Euclidean space E_3 . In this case both sides of (2) are always equal to ∞ and hence (2) is trivially true. In case $\Psi(x, y)$ is (finite-valued) continuous on $K \times K$, either one of (1) and (2) follows from the other because

$$\sup_{\mu \in \mathscr{U}_K} \inf_{x \in S_{\mu}} \frac{\varPhi(x, \mu)}{\varPhi(\mu, x)} = -\inf_{\mu \in \mathscr{U}_K} \sup_{x \in S_{\mu}} (-\varPhi(x, \mu))$$

PROOF OF THE THEOREM. We may assume $\Phi > 0$ without loss of generality. We shall denote the left and the right hand sides of (1) by α and β respectively. First we consider the case where Φ is finite-valued and K consists of a finite number of points by induction. The case when K consists of one point is trivial. Suppose that (1) is true when K contains exactly n points, and let us consider the case where K consists of n+1 points. We can express $\mu \in \mathscr{U}_K$ by