On a Capacitability Problem Raised in Connection with Linear Programming

Maretsugu YAMASAKI (Received March 15, 1966)

Introduction

Let X and Y be compact Hausdorff spaces, $\varPhi(x, y)$ be a universally measurable¹⁾ function on $X \times Y$ which is bounded from below, g(x) be any function on X and f(y) be a universally measurable function which is bounded from above. We denote by \mathscr{M} the set of all non-negative Radon measures satisfying the inequality

$$\int \mathcal{Q}(x, y) d\mu(y) \leq g(x) \quad \text{on} \quad X$$

In the case that \mathcal{M} is not empty, the quantity

$$M = \sup \left\{ \int f d\mu \, ; \, \mu \in \mathscr{M} \right\}$$

was considered by Ohtsuka [4] in connection with a generalization of a theorem in the theory of linear programming. In this paper, we consider the family \mathscr{M}_K of measures in \mathscr{M} supported by a compact subset K of Y and consider a similar quantity

$$M(K) = \sup\left\{\int f d\mu; \mu \in \mathcal{M}_K\right\}$$

in the case that \mathscr{M}_K is not empty. This quantity has a potential theoretic meaning. In fact, Fuglede [2] considered it in case $\emptyset \ge 0$, g=1 and f=1 and denoted it by cap K. We shall call it Fuglede's capacity in §11.

For any set $A \subset Y$, we define in §1 an inner quantity $M_i(A)$ and an outer quantity $M_e(A)$ from M(K) in the same way as the inner capacity cap_*A and the outer capacity cap^*A were defined from $\operatorname{cap} K$ in [2]. Ohtsuka orally raised the question as to when $M_i(A)$ is equal to $M_e(A)$. We shall give an answer to this question in the present paper.

Kishi [3] examined this problem in the case that X = Y, $\Phi(x, y) = \Phi(y, x) > 0$ for all x, $y \in X$, Φ is lower semicontinuous and g=f=1. His main result

¹⁾ A function on a compact set is universally measurable if it is measurable with respect to all Radon measures.