Generalized Capacity and Duality Theorem in Linear Programming

Makoto Ohtsuka (Received March 15, 1966)

Introduction

Recently certain results in the theory of games and linear programming have been applied to potential theory. We mention M. Nakai [2], B. Fuglede [1] and M. Ohtsuka [4]. Our paper is along this line.

More precisely, the minimax theorem in the theory of games was applied to the theory of capacity in [4]. For a compact Hausdorff space K and an extended real-valued lower semicontinuous function φ on $K \times K$ which is bounded below, the author established

(1)
$$\inf_{\mu \in \mathcal{U}} \sup_{x \in S_{\mu}} \int \Phi(x, y) d\mu(y) = \inf_{\nu \in \mathcal{U}} \sup_{y \in S_{\nu}} \int \Phi(x, y) d\nu(x)$$

and

(2)
$$\sup_{\mu \in \mathscr{U}} \inf_{x \in S_{\mu}} \int \mathscr{Q}(x, y) d\mu(y) = \sup_{\nu \in \mathscr{U}} \inf_{y \in S_{\nu}} \int \mathscr{Q}(x, y) d\nu(x) ,$$

where \mathscr{U} is the class of unit measures¹⁾ in K. See [3] for a simple proof of (1) in the case where K is discrete. We extend these results in the present paper. In §1 we consider a lower semicontinuous kernel, and generalize (1) by making use of a duality theorem in linear programming obtained in [5]. Next we are concerned with an upper semicontinuous kernel. A generalization of (2) is obtained there.

Let \emptyset be a function (called kernel) on $K \times K$ which is bounded above or below, and let g and f be upper or lower semicontinuous functions on Kwhich are bounded above or below. We denote by $\mathcal{N}(\mathcal{N}^+ \text{ resp.})$ the class of measures (non-zero measures resp.) μ satisfying $\int \emptyset(x, y) d\mu(y) \leq g(x)$ on S_{μ} , and by $\check{\mathcal{N}}(\check{\mathcal{N}}^+ \text{ resp.})$ the class of measures (non-zero measures resp.) ν satisfying $\int \emptyset(x, y) d\nu(x) \leq f(y)$ on S_{ν} . We set

$$N = \sup_{\mu \in \mathscr{N}} \int f d\mu, \ N^{\scriptscriptstyle +} = \sup_{\mu \in \mathscr{N}^{\scriptscriptstyle +}} \int f d\mu, \ \check{N} = \sup_{\nu \in \check{\mathscr{N}}} \int g d\nu, \ \check{N}^{\scriptscriptstyle +} = \sup_{\nu \in \check{\mathscr{N}}^{\scriptscriptstyle +}} \int g d\nu$$

¹⁾ Here and throughout our paper a measure means a non-negative Radon measure.