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Introduction

Recently certain results in the theory of games and linear programming
have been applied to potential theory. We mention M. Nakai [2], B. Fuglede
[1] and M. Ohtsuka [4]. Our paper is along this line.

More precisely, the minimax theorem in the theory of games was applied
to the theory of capacity in [4]. For a compact Hausdorff space K and an
extended real-valued lower semicontinuous function Φ on K x K which is
bounded below, the author established

(1) inf sup\0(>, y)dμ(γ) = inf sup UA>, y)dv(x)

and

(2) sup inf \Φ{x, y)dμ(y) = sxxv inf \Φ(x, γ)dv(x) ,
μEE® χ(=Sμ) v<=® yGSvJ

where °U is the class of unit measures10 in K. See [3] for a simple proof of
(1) in the case where K is discrete. We extend these results in the present
paper. In § 1 we consider a lower semicontinuous kernel, and generalize (1)
by making use of a duality theorem in linear programming obtained in [5].
Next we are concerned with an upper semicontinuous kernel. A generali-
zation of (2) is obtained there.

Let Φ be a function (called kernel) on KxK which is bounded above or
below, and let g and / be upper or lower semicontinuous functions on K
which are bounded above or below. We denote by J^(J^+ resp.) the class of

measures (non-zero measures resp.) μ satisfying \Φ(x, y)dμ(y)<L g(χ) on Sμ9

and by Jf(Jf+ resp.) the class of measures (non-zero measures resp.) v satis-

fying [φ{χ, γ)dv(χ)<f(y) on Sv. We set

Γ C ^ ( ^ (
N= sup\/dμ, N+ = sup \fdμ, N = swp\gdv, N+ = sup \gdv

1) Here and throughout our paper a measure means a non-negative Radon measure.


