A Generalization of Duality Theorem in the Theory of Linear Programming

Makoto Ohtsuka (Received March 15, 1966)

We consider an $m \times n$ matrix (a_{ij}) , a vector \boldsymbol{b} with components b_1, \dots, b_m and a vector \boldsymbol{c} with components c_1, \dots, c_n . We denote by \mathscr{M} the set of vectors \boldsymbol{u} having non-negative components u_1, \dots, u_n and satisfying $\sum_{j=1}^n a_{ij} u_j \leq b_i$ $(i=1,\dots,m)$, and by \mathscr{M}' the set of vectors \boldsymbol{v} having non-negative components v_1,\dots,v_m and satisfying $\sum_{j=1}^m a_{ij} v_i \geq c_j$ $(j=1,\dots,n)$. We set

$$M = \sup_{\boldsymbol{u} \in \mathcal{M}} \boldsymbol{c} \cdot \boldsymbol{u}' = \sup_{\boldsymbol{u} \in \mathcal{M}} \sum_{j=1}^{n} c_{j} u_{j}$$
 if $\mathcal{M} \neq \emptyset$ (the empty set)

and

$$M' = \inf_{\boldsymbol{v} \in \mathscr{M}'} \boldsymbol{b} \cdot \boldsymbol{v}' = \inf_{\boldsymbol{v} \in \mathscr{M}'} \sum_{i=1}^{m} b_i v_i$$
 if $\mathscr{M}' \neq \varnothing$.

The well-known duality theorem in the theory of linear programming asserts that, if $\mathcal{M} \neq \emptyset$ and $M < \infty$, then $\mathcal{M}' \neq \emptyset$ and M = M'.

We shall generalize this theorem in the present paper. Let X and Y be compact Hausdorff spaces and $\Phi(x, y)$ a universally measurable function on $X \times Y$ which is bounded below. Let g(x) be a universally measurable function on X which is bounded below and f(y) a universally measurable function on Y which is bounded above.

Under these general circumstances let $\mathcal M$ be the class of all non-negative Radon measures²⁾ μ on Y satisfying

$$\int_{Y} \Phi(x, y) d\mu(y) \leq g(x)$$
 on X .

Such a measure is called *feasible*. In case \mathcal{M} is not empty, we set

$$M = \sup_{\mu \in \mathcal{M}} \int f(y) d\mu(y) .$$

¹⁾ A function in a compact space is universally measurable if it is measurable with respect to all Radon measures.

²⁾ A measure means a non-negative Radon measure in this paper unless otherwise stated.