Chain Conditions for Abelian, Nilpotent and Soluble Ideals in Lie Algebras

Toshiharu IKEDA (Received January 16, 1979)

1. Introduction

Let \mathfrak{X} be a class of Lie algebras over a field \mathfrak{f} , and let $\operatorname{Max} \operatorname{\neg } \mathfrak{X}$ (resp. Min- $\operatorname{\neg } \mathfrak{X}$) be the class of Lie algebras which satisfy the maximal (resp. minimal) condition for \mathfrak{X} -ideals. Amayo and Stewart have asked the following among "Some open questions" in [1]: Are there any inclusions between $\operatorname{Max} \operatorname{\neg } \mathfrak{A}$, $\operatorname{Max} \operatorname{\cap } \mathfrak{A}$,

Recently it was shown by Kubo [2] that $Max \rightarrow \mathfrak{A}$ and $Max \rightarrow \mathfrak{N}$ (resp. $Min \rightarrow \mathfrak{A}$ and $Min \rightarrow \mathfrak{N}$) do not necessarily coincide with each other. He showed these facts by considering a certain Lie algebra over the rational number field.

The purpose of this paper is to show the following theorems.

THEOREM 1. Over any field

 $Max - \triangleleft \mathfrak{N} \geqq Max - \triangleleft \mathfrak{E}\mathfrak{A} \quad and \quad Min - \triangleleft \mathfrak{N} \geqq Min - \triangleleft \mathfrak{E}\mathfrak{A}.$

THEOREM 2. Over any field

$Max - \triangleleft \mathfrak{A} \geqq Max - \triangleleft \mathfrak{N}.$

Throughout the paper, we shall employ the notations and terminology in [1].

2. Proof of Theorem 1

Let f be an arbitrary field and A an infinite extension field of f. Let ρ be the regular representation of A. Consider A as an abelian Lie algebra over f, so that ρ becomes a Lie homomorphism of A into Der (A). Thus we can form the split extension

$$L = A \neq \rho(A),$$

where $A \triangleleft L$ and $[a, \rho(b)] = ab$ for any $a, b \in A$.

We first show that any non-zero ideal of L contains A. Suppose $0 \neq I \lhd L$. Then $0 \neq I \cap A \lhd L$. In fact, if $I \cap A = 0$, then there exist a, $b \in A$ with $b \neq 0$ such