Optimal Balanced Fractional 3^m Factorial Designs of Resolution V and Balanced Third-Order Designs

Masahide Kuwada

(Received January 16, 1979)

Contents

0. Introduction and summary	347
Part I. 3 ^m -FF designs and their algebraic structure	351
1. Linear model of 3 ^m -FF designs	351
2. B-arrays and information matrices	352
3. TMDPB association schemes	355
4. MD relationships and their algebra	357
Part II. 3 ^m -BFF designs of resolution V and their optimal designs	366
5. 3 ^m -BFF designs of resolution V	366
6. Characteristic polynomials of information matrices	367
7. Covariance matrices of 3 ^m -BFF designs	374
8. Optimal 3 ⁴ -BFF designs of resolution V	376
9. Optimal 3 ⁵ -BFF designs of resolution V derivable from B-arrays	
of strength 5	377
Part III. Balanced third-order designs for 3^m factorials and their optimal	
designs	378
10. Third-order model and relationship	378
11. Characteristic polynomials of information matrices of balanced	
third-order designs	379
12. Covariance matrices and optimal balanced third-order designs for	
3 ⁶ factorials	387
Appendix I. Connection between $A_{a}^{(a_1a_2,b_1b_2)}$, and $A_{\beta}^{\sharp(c_1c_2,d_1d_2)}$ and	
$\mathcal{A}_{f_{j_j}}^{\#(u_1u_2,v_1v_2)}$	390
Appendix II. MD relationship algebra for balanced third-order designs	396
Appendix III. Tabulation	399

0. Introduction and summary

Fractional factorial designs were first introduced by Finney [18] in an agricultural setting. The theory has found increasing use in various fields of experimentations, and further developed in orthogonal fractions in which estimates of the effects of interest are mutually uncorrelated. However, orthogonal fractions are available only for special values of the number of assemblies (or treatment combinations) and are generally uneconomic in the sense that they involve more than the desirable number of assemblies. In this sense, one needs to consider non-orthogonal (or irregular) fractions as well (cf. [4]). The class