Нікозніма Матн. J. 10 (1980), 437–467

On null sets for extremal distances of order 2 and harmonic functions

Hiromichi YAMAMOTO (Received January 17, 1980)

Introduction

L. Ahlfors and A. Beurling [1] gave a characterization of the removable singularities for the class of analytic functions with finite Dirichlet integral, in terms of extremal distances on the complex plane. In the N-dimensional euclidean space \mathbb{R}^N , Väisälä [9] introduced the notion of null sets for extremal distances of order N, namely, NED-sets, and gave measure-theoretic conditions for NED-sets.

In the present paper, we are concerned with the extremal distances of order 2 in the N-dimensional space \mathbb{R}^N with $N \ge 3$ and give several characterizations of null sets for these extremal distances. More precisely, we shall consider the following three kinds of null sets. Given a compact set E in \mathbb{R}^N , denote by $(\hat{E}^c)_Q$ the Kerékjártó-Stoïlow compactification of E^c ($=\mathbb{R}^N - E$) and by $(\hat{E}^c)_I$ the Aleksandrov compactification of E^c . Let B_0 , B_1 be two disjoint closed balls in E^c , λ be the extremal distance of order 2 between B_0 and B_1 and λ_0 (resp. λ_Q, λ_I) be the extremal distance of order 2 between B_0 and B_1 relative to $E^c - (B_0 \cup B_1)$ (resp. $(\hat{E}^c)_Q - (B_0 \cup B_1), (\hat{E}^c)_I - (B_0 \cup B_1)$). If $\lambda_0 = \lambda$ (resp. $\lambda_Q = \lambda, \lambda_Q = \lambda_I$) for every choice of B_0 and B_1 , then we call E an NED_2 -set (resp. NED_2^Q -set, $NED_2^{Q,I}$ set).

Corresponding to these extremal distances, there are notions of 2-capacities of condenser, which were studied by many authors (for example, see [12], [5], [11]); and there are also notions of principal functions (see [8]). We shall give characterizations of NED_2 -sets, NED_2^Q -sets and NED_2^Q .^I-sets in terms of corresponding 2-capacities of condensers and principal functions.

Another characterizations will be given by the removability for certain classes of harmonic functions (cf. [5], [8], [11] for related results). Let G be a bounded domain containing E and let $HD^2(G)$ (resp. $HD^2(G-E)$) be the class of all harmonic functions with finite Dirichlet integrals on G (resp. on G-E). We shall say that E is removable for \widetilde{HD}^2 (resp. KD^2 ; \widetilde{KD}^2 ; HD^2) if every $u \in HD^2(G-E)$ with "vanishing normal derivative along E" (resp. with no flux; with no flux and "constant value along each component of E"; with no additional condition) can be extended to a function in $HD^2(G)$. (For precise definitions of \widetilde{HD}^2 , KD^2 , \widetilde{KD}^2 , see § 3, as well as the references cited above.) It is well known (see [3])