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Continuity of contractions in a functional Banach space
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In the Dirichlet space theory, contractions on the real line play an important

role in connection with potential theoretic properties. A. Ancona [1] proved

that contractions are continuous in Dirichlet space. Our aim in this note is to

prove that the contractions considered in [3] are continuous in a certain func-

tional Banach space.

Let X be a locally compact space and ξ be a positive (Radon) measure on X.

For measurable functions u and υ on X, we define

u v v = max {u, v}, u A V = min {u, v},

u+ = u v 0 and u~ = - ( M Λ O ) .

Let X=X(X; ζ) be a real reflexive Banach space whose elements are

measurable functions on X. We denote by ||«|| the norm of u e f , by X* the

dual space of X9 and by <M*, M> the value of u* e X* at u e X.

Throughout this note, let Φ be a strictly convex function on & such that

( i ) Φ(u) ^ 0 for all ueX and Φ(u) = 0 if and only if u = 0;

(ii) if {un} c $ and limπ_ ^ Φ(un)=0, then uπ->0 in X

(iii) Φ is bounded on each bounded subset of 9£\ and

(iv) Φ is difierentiable in the sense of Gateaux, i.e., there is an operator

G: &-*&* such that for any u,

The operator G is called the gradient of Φ and denoted by VΦ.

We shall use the following elementary properties of Φ and VΦ without

proof:

(Φ t) Let M G ̂  and u* e X*. Then u* = FΦ(M) if and only if

<M*5 v - M> <; Φ(t;) - Φ(u) for any i? e # .

(Φ2) FΦ is bounded, i.e., it maps bounded sets in X to bounded sets in X*.

For a non-negative measurable function g on X> we define an operator T+ by

= u+
 A g for t / e l


