Нігозніма Матн. J. 10 (1980), 365–368

Existence of non-tangential limits of solutions of non-linear Laplace equation

Yoshihiro MIZUTA (Received December 17, 1979)

Our aim in this note is to study the boundary behavior of (weak) solutions of the non-linear Laplace equation

(1)
$$-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(|\operatorname{grad} u|^{p-2} \frac{\partial u}{\partial x_{i}} \right) = 0 \quad \text{on} \quad \Omega,$$

where Ω is a domain in the *n*-dimensional Euclidean space \mathbb{R}^n .

We say that $\xi \in \partial \Omega$ satisfies the interior cone condition if there is an open truncated cone Γ in Ω with vertex at ξ . Let F be the set of all $\xi \in \partial \Omega$ satisfying the interior cone condition. We can show that F is an F_{σ} -set^{*}).

A function u on Ω is said to have a non-tangential limit at $\xi \in F$ if for any open truncated cone $\Gamma \subset \Omega$ with vertex at ξ ,

$$\lim_{x\to\xi,x\in\Gamma'}u(x)$$

exists and is finite whenever Γ' is a cone with vertex at ξ whose closure $\overline{\Gamma}'$ is included in $\Gamma \cup \{\xi\}$.

In this note let $1 and let <math>\rho(x)$ denote the distance of x from $\mathbb{R}^n - \Omega$.

THEOREM. Let 1 and let u be a function satisfying the following properties:

- i) u is continuous on Ω ;
- ii) u is p-precise^{**)} on any relatively compact open subset of Ω ;
- iii) u satisfies (1) in the weak sense (cf. [4]);
- iv) $\int_{\Omega} |\operatorname{grad} u(x)|^p \rho(x)^{\alpha} dx < \infty$ for $\alpha < p$.

Then there exists a set $E \subset \partial \Omega$ such that $B_{1-\alpha/p,p}(E) = 0$ and u has a non-tangential limit at each point of F - E.

Here $B_{1-\alpha/p,p}$ denotes the Bessel capacity of index $(1-\alpha/p, p)$ (see [1]). In case p=2, our theorem is shown in [3; Theorem 2'].

^{*)} This fact was pointed out by Professor Makoto Sakai.

^{**)} For the definition of p-precise functions, see Ziemer [5].