Нікозніма Матн. J. 10 (1980), 323–327

Scalar curvatures of left invariant metrics on some Lie groups

Kagumi UESU (Received November 9, 1979)

In [1], J. Milnor gave many facts concerning curvatures of left invariant metrics on Lie groups. About scalar curvatures, he showed that

(1) if a Lie group G is solvable, then every left invariant metric on G is either flat, or else has strictly negative scalar curvature, and

(2) every left invariant metric on $SL(2, \mathbf{R})$ has strictly negative scalar curvature.

And he conjectured that if the universal covering group of a Lie group G is homeomorphic to Euclidean space then the conclusion of (1) holds. In this note we shall show that this conjecture is affirmative, that is, we have the following

THEOREM. Let G be a Lie group such that the universal covering group of G is homeomorphic to Euclidean space. Then every left invariant metric on G is either flat or else has strictly negative scalar curvature.

Let G be a Lie group with a left invariant metric \langle , \rangle and H a closed normal subgroup. In this note, we always consider the left invariant metrics \langle , \rangle_H on H and $\langle , \rangle_{G/H}$ on G/H obtained from the metric of G naturally, so that the natural embedding from H into G is an isometry and the natural projection π from G to G/H is a submersion. We denote the sectional curvatures of G, G/H and H by κ , κ_* and $\bar{\kappa}$, and the scalar curvatures by $\rho(G)$, $\rho(G/H)$ and $\rho(H)$ respectively.

LEMMA 1. Let G be a Lie group whose universal covering group is homeomorphic to Euclidean space and g its Lie algebra. If G is not solvable, then $g=s_1+g_0$ (direct sum) where s_1 is a Lie subalgebra of g isomorphic to $\mathfrak{sl}(2, \mathbb{R})$ and g_0 is an ideal of g such that the connected simply connected Lie group whose Lie algebra is isomorphic to g_0 is homeomorphic to Euclidean space.

PROOF. Let g=s+r (direct sum) be a Levi decomposition, where s is a semisimple Lie subalgebra of g and r is the radical of g. By the assumption, $s \neq 0$ and the connected simply connected Lie group whose Lie algebra is isomorphic to s is homeomorphic to Euclidean space. Because of the fact that a connected simply connected simple Lie group homeomorphic to Euclidean space is locally