On the covering properties of certain exceptional sets in a half-space

Matts Essén and Howard L. JACKSON (Received January 8, 1979) (Revised January 16, 1980)

§1. Introduction

Let $D = \{x \in \mathbb{R}^p : x_1 > 0\}$ where $x = (x_1, ..., x_p)$ and $p \ge 2$. We shall say that a set $E \subset \mathbb{R}^p$ has a covering $\{r_n, R_n\}$ if there exists a sequence of balls $\{B_n\}$ in \mathbb{R}^p such that $E \subset \bigcup_{n=1}^{\infty} B_n$, where r_n is the radius of B_n , and R_n is the distance between the origin and the centre of B_n . On the other hand, we shall say that $E \subset D$ has a covering $\{t_n, r_n, R_n\}$ if there exists a sequence of balls $\{B_n\}$ with centres in Dsuch that $E \subset \bigcup_{n=1}^{\infty} B_n$, where r_n and R_n are defined as above and where t_n is the distance between the centre of B_n and the Euclidean boundary of D, to be denoted by ∂D .

The motivation of this work stems from two classical questions which are concerned with the behaviour at ∞ of a suitably restricted subharmonic function u on D. If u is subharmonic on D and $y \in \partial D$, we define $u(y) = \limsup_{x \to y} u(x)$, where $x \in D$. If $u(y) \le 0$ for all $y \in \partial D$, and if $\sup_{x \in D} (u(x)/x_1) < \infty$, then it is generally known that u can be uniquely decomposed as

$$u(x) = \alpha x_1 - G\mu(x) - w(x),$$

where α is a real number, $G\mu$ is the Green potential of a mass distribution μ on D, and w is a positive harmonic function on D which can be represented as

$$w(x) = \int_{\partial D} K(y, x) dv(y)$$

where K is the Poisson kernel on $\partial D \times D$ and v is a suitable mass distribution on ∂D .

The first question, to be designated by (I), is concerned with an analysis of $u(x)/x_1$ as $x \to \infty$, $x \in D$. By introducing the idea of a minimally thin set at ∞ with respect to D, J. Lelong-Ferrand ([12], pp. 134–143) presented a solution of (I) by showing that for any $\varepsilon > 0$, there exists a set $E_{\varepsilon} \subset D$, minimally thin at ∞ in D, such that

$$|u(x)/x_1 - \alpha| < \varepsilon, \quad x \in D \setminus E_{\varepsilon}, \quad |x| \ge 1.$$

She also proved that her results are best possible in the sense that if $E \subset D$ is