Нікозніма Матн. J. 10 (1980), 607–613

On the behavior at infinity of Green potentials in a half space

Yoshihiro MIZUTA (Received April 18, 1980)

1. Introduction

Let u be a Green potential in the half space $D = \{x = (x_1, ..., x_n); x_n > 0\}$, $n \ge 2$. Then it is known that $x_n^{-1}u(x)$ tends to zero as $|x| \to \infty$, $x \in D - E$, where E is minimally thin at infinity (cf. [2]). Recently Essén-Jackson [2] have proved that $|x|^{-1}u(x)$ tends to zero as $|x| \to \infty$, $x \in D - E$, where the exceptional set E is called rarefied at infinity. Our aim in this note is to extend these results to Green potentials of general order.

Let k be a non-negative Borel measurable function on $\mathbb{R}^n \times \mathbb{R}^n$, and set

$$k(x, \mu) = \int_E k(x, y)d\mu(y)$$
 and $k(\mu, y) = \int_E k(x, y)d\mu(x)$

for a non-negative measure μ on a Borel set $E \subset \mathbb{R}^n$. We define a capacity C_k by

$$C_k(E) = \sup \mu(R^n), \qquad E \subset D,$$

where the supremum is taken over all non-negative measures μ such that S_{μ} (the support of μ) is contained in E and

 $k(x, \mu) \leq 1$ for every $x \in D$.

Let G_{α} be the Green function of order α for D, i.e.,

$$G_{\alpha}(x, y) = \begin{cases} |x - y|^{\alpha - n} - |\overline{x} - y|^{\alpha - n} & \text{in case } 0 < \alpha < n, \\ \log(|\overline{x} - y|/|x - y|) & \text{in case } \alpha = n, \end{cases}$$

where $\bar{x} = (x_1, ..., -x_n)$ for $x = (x_1, ..., x_n)$. For $0 \le \beta \le 1$, we consider the function $k_{\alpha,\beta}$ defined by

$$k_{\alpha,\beta}(x, y) = \begin{cases} x_n^{-1} y_n^{-\beta} G_{\alpha}(x, y) & \text{for } x, y \in D, \\ \lim_{z \to x, z \in D} z_n^{-1} y_n^{-\beta} G_{\alpha}(z, y) = a_{\alpha} y_n^{1-\beta} |x - y|^{\alpha - n - 2} \\ & \text{for } x \in \partial D \text{ and } y \in D \end{cases}$$

where $a_{\alpha} = 2(n-\alpha)$ if $\alpha < n$ and = 2 if $\alpha = n$. In case $\beta = 1$, $k_{\alpha,1}$ is extended to be continuous on $\overline{D} \times \overline{D}$ in the extended sense.