On asymptotic limits of nonoscillations in functional equations with retarded arguments

Bhagat SINGH and Takaŝi KUSANO (Received March 3, 1980)

1. Introduction

Our main aim in this paper is to study the asymptotic properties of the nonoscillatory solutions of the differential equation

(1)
$$L_n y(t) + a(t)h(y(g(t))) = f(t),$$

where $n \ge 2$ and L_n is a disconjugate differential operator defined by

(2)
$$L_n y(t) = p_n(t) (p_{n-1}(t) (\cdots (p_1(t) (p_0(t)y(t))')' \cdots)')'.$$

The following conditions are always assumed to hold:

(i) $p_i \in C([\alpha, \infty), (0, \infty)), 0 \le i \le n$, and

(3)
$$\int_{\alpha}^{\infty} p_i^{-1}(t)dt = \infty, \quad 1 \le i \le n-1;$$

(ii) $a, f, g \in C([\alpha, \infty), R)$, a is of one sign, there exists a $t_0 > \alpha$ such that $0 < g(t) \le t$ for $t \ge t_0$, and $g(t) \to \infty$ as $t \to \infty$;

(iii) $h \in C(R, R)$, h is nondecreasing, and sign h(y) = sign y. We introduce the notation:

(4)
$$L_0 y(t) = p_0(t)y(t), \quad L_i y(t) = p_i(t)(L_{i-1}y(t))', \quad 1 \le i \le n.$$

The domain $\mathscr{D}(L_n)$ of L_n is defined to be the set of all functions $y: [T_y, \infty) \to R$ such that $L_i y(t), 0 \le i \le n$, exist and are continuous on $[T_y, \infty)$. In what follows by a "solution" of equation (1) we mean a function $y \in \mathscr{D}(L_n)$ which is nontrivial in any neighborhood of infinity and satisfies (1) for all sufficiently large t. A solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise the solution is called nonoscillatory.

It is well known [5, 7] that in case $L_n y(t) = y^{(n)}(t)$ equation (1) has a nonoscillatory solution with a prescribed limit as $t \to \infty$ if

(5)
$$\int_{0}^{\infty} t^{n-1} |a(t)| dt < \infty$$

and