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1. Introduction

Our main aim in this paper is to study the asymptotic properties of the
nonoscillatory solutions of the differential equation

(1)

where n > 2 and Lπ is a disconjugate differential operator defined by

(2) Lny(t) = pa(t) (pH. ,(

The following conditions are always assumed to hold :
( i ) pt e C([α, oo), (0, oo)), 0 <, i <. n, and

(3) pl\t)dt = oo, l < i < n - l ;
JΛ

(ii) α,/, 0eC([α, oo), jR), a is of one sign, there exists a ί0>
α sucn that

0<0(f)<ί for ί>ίθ5 and g(i)-*co as ί->oo;
(iii) h E C(R, jR), h is nondecreasing, and sign /ι(j;) = sign y.

We introduce the notation :

(4) LoJ<0 = PoCOXO, Lιy(t) = p,(0(Li-ιXθy, 1 < i < n.

The domain ^(Lπ) of Lπ is defined to be the set of all functions y: [Tv, oo)-*jR
such that Lfy(ί), 0<i<n, exist and are continuous on [Ty9 oo). In what follows
by a "solution" of equation (1) we mean a function y e ^(Lπ) which is nontrivial
in any neighborhood of infinity and satisfies (1) for all sufficiently large ί. A
solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise the

solution is called nonoscillatory.
It is well known [5, 7] that in case Lny(f) = y(n\f) equation (1) has a non-

oscillatory solution with a prescribed limit as ί->oo if

(5) \ tn'l\a(t)\dt < oo

and


