Localization of differential operators and holomorphic continuation of the solutions

Yoshimichi Tsuno (Received January 21, 1980)

1. Introduction

The holomorphic continuation of solutions of linear partial differential equations across the multiple characteristic surfaces is the subject of this paper. In the preceding note [4] we attack this problem with the aid of the Goursat problem. Since the existence-domain of solutions of the Goursat problem is determined not only by the principal parts of the equations but also by their lower order terms, the results in [4] depend on the "weighted principal parts" of the operators which are not contained in the principal parts.

The purpose of this paper is to improve the results in [4] so that the theorems are also valid under the similar assumptions only on the principal parts of the operators and the properties of the boundary surfaces.

Let $P(z, \partial_z)$ be a linear partial differential operator with holomorphic coefficients defined near a point p in \mathbb{C}^n and Ω be an open set with the C^2 boundary $\partial\Omega$ which contains p. Though the property of the holomorphic continuation is free from the choice of the local coordinates, we here employ the weighted local coordinates at p such that the normal direction z_1 of $\partial\Omega$ at p is assigned the weight 2, while the tangential directions $z_2, ..., z_n$ are each assigned the weight 1. The motivation of this employment is that the boundary $\partial\Omega$ can be approximated by the quadratic hypersurfaces of the form

$$\operatorname{Re} z_1 = \operatorname{Re} \sum a_{ij} z_i z_j + \sum b_{ij} z_i \overline{z}_j.$$

To make this paper self-contained, some properties related to the weighted coordinates are restated in the next section which is the summary of the section 2 in [4]. In the third section the basic theorem is proved under some fixed local coordinates. The idea of the proof is due to Hörmander [1] and used also by Treves and Zachmanoglou to show the uniqueness of the Cauchy problem (see the references of [3]) and in [3] to obtain the holomorphic continuation theorem. The key point of this idea is to construct the family of surfaces which are noncharacteristic with respect to $P(z, \partial_z)$ and cover a neighborhood of p. This basic theorem is the generalization of the theorem of the simple characteristic case. In the last section, §4, we study the geometric conditions on $P(z, \partial_z)$ and $\partial \Omega$ to insure the existence of the local coordinates in the third section. The