Lie algebras which have an ascending series with simple factors

Yoshimi KASHIWAGI (Received September 18, 1980)

Introduction

In this paper we investigate Lie algebras which have an ascending series whose factors are simple. Here simple Lie algebras are non-abelian simple. In [3] Levich has shown that if H is an ascendant subalgebra of a simple Lie algebra L, then H=0 or H=L. In particular H is a perfect characteristic ideal of L. In §1 we shall show that, in a Lie algebra which has an ascending series whose factors are simple, every ascendant subalgebra is a perfect characteristic ideal. In §2 we consider a special case and its application. In [6] it has been shown that, in the Lie algebra L of all endomorphisms of an infinite-dimensional vector space, every subideal is an ideal of L. We shall show in $\S 2$ that every ascendant subalgebra of L is an ideal. In §3 we shall show that $f(\mathbf{n}) \mathfrak{F} \leq \mathbf{L} \mathfrak{F}$. Using the results of §§ 1 and 3, we shall show in §4 that in a Lie algebra which has an ascending series whose factors are finite-dimensional simple, every serial subalgebra is a perfect characteristic ideal. In § 5 we apply our results to prove that, in a semi-simple neoclassical algebra, serial subalgebras and local subideals are perfect characteristic ideals. In [7] it has been shown that every soluble Lie algebra, in which every ascendant subalgebra is an ideal, is either abelian or the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications and conversely. We shall finally show in §6 that in the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications every serial subalgebra is an ideal.

Let *H* be a subalgebra of a Lie algebra *L* and let Σ be a totally ordered set. A series from *H* to *L* of type Σ is a family $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of subalgebras of *L* such that

- (1) For all $\sigma, H \leq \Lambda_{\sigma}$ and $H \leq V_{\sigma}$,
- (2) $L \setminus H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}),$
- (3) $\Lambda_{\tau} \leq V_{\sigma}$ if $\tau < \sigma$,
- (4) $V_{\sigma} \lhd \Lambda_{\sigma}$.

The quotient algebras $\Lambda_{\sigma}/V_{\sigma}$ are the factors of the series. If Σ is well-ordered (resp. reversely well-ordered, finite), then the series is called an ascending series (resp. a descending series, a subideal) and we write $H \sec L$ (resp. $H \det L$,