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Introduction

The purpose of this paper is to show that the McKean's conjecture in [2] is

valid for the set of all equivalence classes of irreducible unitary representations of

class one.

§ 1. Spherical functions

Let JGΓ be a separable Hubert space over R (or C). In this paper, we fix,

once for all, an orthonomal basis {ξj- jeN} of H, where N is the set of all

positive integers. Let E be the space algebraically spanned by the basis {ξf,

j eN}. We denote by Em the space spanned by the set {ξj 9 j = !9...9m}. Then

we have E=\j™=iEm. Since a countable inductive limit of nuclear spaces is

nuclear, E is a nuclear space. Let G be the group of all isometrics g of H such

that gξj = ξj except finitely many j in N. We denote by Gm the group of all

elements g in G such that gξj = ξj (j = m + l9 m + 2,...). Then we have G =

^m=ι Gm. By the inductive limit topology G is a topological group. For a g

in Gm, putting gξj = Σ?=ι Qijζi 0 = !>•••> ™)> we can identify g with the matrix
(gtj) in 0(m) (or l/(m)).

We denote by E* the dual space of E, then we have a triple

E c H G E*.

By the Bochner-Minlos theorem, there exists a probability measure μ on E* such

that for any ξ in E we have

(1.1) e-imi 2/2 = ( ei<x^>dμ(x).
JE*

We use the same notation for the dual action of g on E*. Clearly μ is G-

invariant. For any g in G and /in L2(E*, μ) we define

(π*G/)/)(x) =/(όf1x) for a.e. x in E*.

Then it is easy to see that π* is a unitary representation of G on L2(E*, μ). For


