On a certain class of irreducible unitary representations of the infinite dimensional rotation group I

Dedicated to Professor Y. Matsushima for his 60th birthday

Hiroshi MATSUSHIMA, Kiyosato OKAMOTO and Takatoshi SAKURAI (Received September 12, 1980)

Introduction

The purpose of this paper is to show that the McKean's conjecture in [2] is valid for the set of all equivalence classes of irreducible unitary representations of class one.

§1. Spherical functions

Let **H** be a separable Hilbert space over **R** (or **C**). In this paper, we fix, once for all, an orthonomal basis $\{\xi_j; j \in N\}$ of **H**, where **N** is the set of all positive integers. Let **E** be the space algebraically spanned by the basis $\{\xi_j; j \in N\}$. We denote by E_m the space spanned by the set $\{\xi_j; j=1,...,m\}$. Then we have $E = \bigcup_{m=1}^{\infty} E_m$. Since a countable inductive limit of nuclear spaces is nuclear, **E** is a nuclear space. Let G be the group of all isometries g of **H** such that $g\xi_j = \xi_j$ except finitely many j in **N**. We denote by G_m the group of all elements g in G such that $g\xi_j = \xi_j (j=m+1, m+2,...)$. Then we have $G = \bigcup_{m=1}^{\infty} G_m$. By the inductive limit topology G is a topological group. For a g in G_m , putting $g\xi_j = \sum_{i=1}^{m} g_{ij}\xi_i (j=1,...,m)$, we can identify g with the matrix (g_{ij}) in O(m) (or U(m)).

We denote by E^* the dual space of E, then we have a triple

$$\boldsymbol{E} \subset \boldsymbol{H} \subset \boldsymbol{E^*}.$$

By the Bochner-Minlos theorem, there exists a probability measure μ on E^* such that for any ξ in E we have

(1.1)
$$e^{-\|\xi\|^2/2} = \int_{E^*} e^{i\langle x,\xi\rangle} d\mu(x).$$

We use the same notation for the dual action of g on E^* . Clearly μ is G-invariant. For any g in G and f in $L^2(E^*, \mu)$ we define

$$(\pi_*(g)f)(x) = f(g^{-1}x)$$
 for a.e. x in E^* .

Then it is easy to see that π_* is a unitary representation of G on $L^2(E^*, \mu)$. For